Software & Hardware Engineering: Motorola 68HC12, by Fred
Cady and James Sibigtroth, published by Oxford University Press,
ISBN 0-19-512469-3

Embedded Microcomputer Systems: Real Time Interfacing, by
Jonathan W. Valvano, Brooks/Cole Publishing Co

New resources for using 68HC12 are becoming available all
the time. Listed below are a few examples:

* MinilDE - WO9x/NT Integrated Development Environment with
editor, assembler, terminal window

* HC12 Simulator - Windows-based 68HC12 Simulator

» Textbooks - there are at least four textbooks now available

» Software - many example subroutines in C and assembler are
available for download

Check both the RESOURCES and APPLICATIONS pages on our
website for links to the above and more.

12

1 INTRODUCTION

Congratulations!

You are now ready to explore the power and flexibility of
Motorola’s 68HC912B32 microcontroller with a unique and useful
tool-- Adapt912. Your questions and comments are always wel-
come. We provide friendly, knowledgeable technical support by
telephone, fax, and e-mail to all our customers. As well, we have a
comprehensive website with a resource page featuring new infor-
mation, software, and links to other useful sites on the Internet.
See the back cover of this manual for contact information.

Purpose of Adapt912...

Adapt912 was designed as an evaluation and application
tool for the Motorola MC68HC912B32 microcontroller. It is unique
among evaluation boards in that it will easily plug vertically into any
standard solderless breadboard, with the supplied adapter. Itis a
fully functional, standalone implementation of a 68HC912B32
configuration, and can be treated just like a chip in your bread-
board. Then it is simply a matter of wiring up the desired applica-
tion circuits and downloading the appropriate code into the micro to
evaluate and develop your application ideas.

Product Configuration

The Adapt912 Starter Package features the 68HC912B32,
with 1K SRAM, 768 bytes EEPROM, and 32K on-chip Flash.
Motorola’s DBugl12 monitor/debugger is resident in the Flash
memory, facilitating easy loading and debugging of your code via
your PC serial port, using any terminal program. Logic levels at
MCU pins PADO & PAD1 (JB2 “MODE SELECT”) are sensed by
DBugl12 directly after reset, to decide whether to jump to internal
EEPROM, run the program in on-chip Flash (Motorola’s DBug12
monitor/debugger or a user-installed program), or operate in BDM
pod mode. A second jumper block (JB1) is provided for setting
MODA and MODB logic levels. These levels are sensed by the
MCU after reset to determine the chip’s operating mode (single-
chip, narrow expanded, or wide expanded memory modes). In

REV 1g

expanded modes, the multiplexed address and data bus lines are
brought out to a second 50-pin connector, H2. Operating in
single-chip mode, all I/O ports are available for user applications.
When operated in expanded-chip mode, additional memory can be
added externally; however, two of the 1/0O ports form the address
and data buses, and are thus unavailable for user applications.

Communications

An RS-232-compatible serial interface port (RX & TX only)
is built into Adapt912, allowing communication with a PC, or any
other device which has an RS-232 serial port. The logic-level RXD
and TXD signals from the micro are also brought out to the 50-pin
header, for applications such as MIDI. An RS-485 serial port is
implemented as well, and can be selected via jumpers on SW2.
RS-485 is commonly used in networking industrial control applica-
tions, where long cable lengths and good noise immunity are re-
quired.

How is Adapt912 different from other evaluation boards ?
Most evaluation and development systems available tend
to be too expensive and bulky for embedding into a real application.
Also, the prototyping area provided is often limited, and does not
lend itself to re-usability. By contrast, the Adapt12 system brings
all I/0 lines and control signals out to two standard 50-pin interface
connectors. With several different connector options available,
you can use the module in whatever way best suits your needs--
board-stacking, end-to-end, backplane, etc. With the solderless
breadboard adapter supplied with your Starter Package, you can
treat the module like a big chip, and plug it right into your bread-
board. Forget soldering or wire-wrapping-- get started developing
your application right away. Your prototyping space is virtually
unlimited, using solderless breadboards! When you've got a de-
sign working and you're ready to make it permanent, modular
prototyping accessories are available, which give you the ability to
easily build fully customized, compact applications at low cost. A
full range of accesories including backplanes, prototyping cards,
memory expansion, and application-specific cards is available, and

5.0 SOURCES

Internet Resources

*Technological Arts: (new product info, files, tips)
www.technologicalarts.com
support@technologicalarts.com
sales@technologicalarts.com

*Motorola Freeware: http://freeware.aus.sps.mot.com/freeweb/

*Motorola Literature:
www.mcu.motsps.com/documentation/index.html

*Karl Lunt (SBASIC): http://www.seanet.com/~karllunt
eImageCraft (ICC12): www.imagecraft.com/software
Publications

Data Books:
Motorola Semiconductor Literature Distribution Center
P.O. Box 20912, Phoenix, AZ 85036 1-800-441-2447

* CPU12 Reference Manual (CPU12RM/AD)
» CPU12 Reference Guide (CPU12RG/D)
* MC68HC912B32 Advance Information (MC68HC912B32/D)

Textbooks:

Programming the Motorola M68HC12 Family, by Gordon Dough-
man, published by Annabooks (California), ISBN 0-929392-67-1
(Order Code PMM929, available from Technological Arts)

Single- and Multi-Chip Microcontroller Interfacing for the Motorola
68HC12, by G. Jack Lipovski, published by Academic Press, ISBN
0-12-451830-3

11

(Erase, Program Flash, or LoadEE). For both Program and
LoadEE, click on the ASCIlI Download button, and select the .s19
file you wish to download. Reset Adapt912 and click OK. When
downloading has finished, re-configure JB2 for JMP-EE mode (for
EEPROM) or EVB mode (for Flash), and press RESET. The pro-
gram you just loaded into EEPROM (or Flash) will execute.

There are a couple of important things to be aware of.
When you are using the JMP-EE function, the code you loaded into
EEPROM starting at 0xd0O is executed immediately (ie. no reset
vector required). However, if you are planning to put your program
in Flash, you need to include the pseudo-vector table (or, at a
minimum, the pseudo-reset vector). Refer to Table 4-1 in Motoro-
la’s 68HC912B32 data book for the Interrupt Vector Map. Im-
ageCraft has implemented this vector table in a file called
vectors.c in the Examples folder. To create a pseudo-vector ta-
ble, modify this file by changing the pragma abs_address to the
pseudo-vector table’s base address, as discussed above, and
save it as pvectors.c. Then include pvectors.c in your project or
add #include “pvectors.c” at the end of your program.

4.3 Using SBASIC

Use the appropriate /c /v and /s compiler options to specify the
starting addresses for code (EEPROM or Flash, usually), variables
(RAM), and stack (end of RAM), respectively, where myprog.bas
is your SBASIC program filename, and myprog.asc is the name
you want the target assembly language file to be called. For ex-
ample, to specify Flash as the target memory area for your code,
enter:

sbasic myprog.bas /c8000 /v0800 /sOc00 >myprog.asc

After successful compilation, edit the ORG statement at the end of
myprog.asc to correspond to the appropriate pseudo vector ad-
dress. Then run asmhc12 to create an s-record file, as follows:
asmhcl1l2 myprog.asc

Once you have a .s19 file, you can use any of the downloading
methods outlined previously to load it into Flash.

10

more accessories are being developed all the time. Visit our web-
site frequently to see what’'s new.

2 USING ADAPT912 WITH SOLDERLESS
BREADBOARDS

Your Adapt912 Starter Package comes with a 50-pin adapter
(ADHDR50-F) to allow you to plug the module into a solderless
breadboard (“protoboard”). This adapter may be used on either
connector (H1 or H2).

CAUTION!

Never insert or remove your module from a “live” breadboard.
Make sure the power is OFF !

1) Any breadboard will do; however, you will find that the kind
made with a softer, more pliable plastic (such as nylon) will be
easier to use and more durable.

2) When plugging the adapter into your breadboard, press gently
but firmly, rocking it back and forth slightly, until the pins are seated
in the sockets. Then plug Adapt912 into the adapter. Note that
either H1 or H2 can be used with the adapter. Use the same
side-to-side (not end-to-end) gentle rocking motion, while pulling
gently upward, to remove the adapter.

3) Use the middle area of your breadboard strip to allow maximum
access on each end to all the signals. If possible, place an addi-
tional breadboard section in parallel on each side for easier wiring
of your circuits. (HELPFUL HINT: If you are using the Analog
inputs, make sure to wire your analog circuits as close to these pins
as possible, to keep noise levels down.)

4) Choose a convention for wiring your power distribution
buses. A logical approach is to make the inside bus logic 5V, and
the outside buses GROUND. Never supply external power via J1
if you are supplying 5VDC via the breadboard connector pins.
However, always connect the breadboard GROUND to the module
GROUND.

5) If you are using voltages other than 5V, make sure to keep
these well away from Adapt912 pins and tie-strips, to avoid acci-
dental shorts which may damage the module.

3 TUTORIAL

Note that this manual is not meant to provide an exhaus-
tive study of the 68HC12 family of microcontrollers, but rather to
help you get started using the Adapt912 microcontroller board as a
learning and application development tool for 68HC912B32,
whether you're a beginner or an expert. If you are a beginner, you
will benefit from additional material listed in the Reference section
of this manual, and links provided on our website (see back cover
for URL). Check the Resources, Tech Support, and Applications
pages.

CAUTION!

Never apply power to your module with the Vfp switch on!
This may damage the MCU. Make sure Vfp is OFF at all times
except when erasing and programming Flash!

31 Getting Started

Adapt912 comes to you with Motorola’s DBug12 monitor/
debugger in Flash. This is a useful program for testing your com-
munications setup, developing programs, or using Adapt912 as a
BDM pod for the purposes of developing/debugging another target
HC12 board.

You can power the module in one of two ways:

1) supply power via the external power connector; just
connect a DC voltage of 9 Volts or more (maximum 12V) to the
external power connector J1. A DC power supply capable of
supplying at least 100 mA is adequate. Note: erasing and pro-
gramming on-chip Flash requires regulated 12VDC. If you
have the Adapt912B32 version of the board, the on-board Vfp
generator circuit provides the required 12V. If not, you will
need to provide regulated 12VDC via J1. Red is positive, and
black is negative (ground). CAUTION! Make sure you have the
polarity correct!

2) or, supply regulated 5VDC via the appropriate pins on
the 50-pin connector (H1). WIth this method, you will not be able to
program/erase Flash (unless you have the Adapt912B version of
the board with on-board Vfp generator circuit). See module pinout

running on your PC), indicating it is ready to receive the first s1
record. Your terminal program needs to wait for another * char-
acter before sending the next s1 record. The process repeats until
the bootloader receives an S9 record, indicating end-of-file, or until
the board is reset. The s-record data must be within the Flash
address range $8000 - $f7ff, otherwise you will see error messages
on the terminal screen. LoadEE is for loading an s-record into the
768-byte EEPROM, which does not require any special program-
ming voltage. It automatically performs a bulk erase before loading
the s-record.

Flash. The on-chip Bootloader approach provides easy loading
without the use of a BDM pod; however, it necessitates a few
compromises. First, the top 2K of Flash is reserved, and is not
available for your program. Secondly, since the MCU'’s vector
space is in the protected block, it requires the use of pseudo-
vectors, which DBugl2 implements in a block of the user-
programmable area of Flash. To use any vector, simply initialize
the corresponding pseudo-vector with the address of your interrupt
service routine. The bootloader will intercept the interrupt and jump
to your routine. This extra level of indirection adds a small amount
of latency to interrupt servicing. The pseudo-vector block is from
$f7d0 - $f7fe, and follows the same sequence as the real vectors.
EEPROM. While the 768 bytes of on-chip EEPROM may not seem
like much space for your code, it is possible to call DBug12 routines
from within your program. Motorola has written an Application Note
on this subject that you may wish to read. Visit the RESOURCES
page of our website for a link to Motorola’s Literature site.

4.2 Using ICC12 for Windows

Before compiling, set up the linker options with 0x0800 for
data (RAM), 0x8000 (Flash) or 0x0d0O (EEPROM) for text, and the
stack at 0x0c00 (or 0xa00, if you're using D-Bug12). After com-
piling to executable, download the resulting s-record file using
ICC12’s terminal window. Configure the MODE SELECT jumpers
(JB2) for BOOTLOAD Mode, and set the terminal communication
options to 9600 baud, wait for * prompt, and no character delay.
Reset the board, and select the operation you wish to perform

other optional functions, including battery backup, clock calendar,
serial EEPROM, 8-bit SPI-based output port, high-speed UART
with RS232 or RS485 interface. The expansion RAM is configured
for Expanded Wide operation, and has both Bank Select and Write
Protect features. It is ideal for educational and code-development
applications, where heavy usage may make Flash durability a
concern. Details on Adapt912MX1 can be found on the website,
along with an Application Note describing in detail suggestions for
its use.

4 REFERENCE

NOTE: Adapt912 contains DBug12 in Flash, just like the
Motorola 912 EVB. Motorola’s complete EVB912 manual is
available in Acrobat format from their website. Visit the TECH
SUPPORT page of our website for a link to download this
highly-recommended document.

4.1 BOOTLOAD Mode

Adapt912 uses on-chip 768-byte EEPROM or 32K Flash
for program storage. A small bootloader is part of the DBug12
program in Flash, and resides in a protected boot-block. Even if
you decide to erase Flash and install your own program via
BOOTLOAD mode, the boot-block will not be erased. At some
later time, you can re-load DBug12 using BOOTLOAD mode.

Using a terminal program, reset the board with JB2 set for
BOOTLOAD mode. A prompt will appear on your terminal screen,
as follows:

(E)rase, (P)rogram or (L)oadEE:

Select the desired function by typing the letter (upper or lower
case) E, P, or L. Note: Erase and Program relate to Flash, so
aregulated 12V source is needed for Vfp. Unless you have the
Adapt912B32 version of the board, with on-board Vfp genera-
tor, you will need to apply regulated 12VDC as your power
source on J1. Leave the Vip switch (SW3) off except when
erasing or programming Flash. Erase simply erases the un-
protected part of Flash (ie. the lower 30K). Program sends an
ASCII * (asterisk character) to the host (the terminal program

diagram included with your manual for the 5V and GROUND pins
to connect to on H1. CAUTION! Double-check your connec-
tions before applying power!

To run the program in Flash (DBugl2, if you haven't re-
placed it yet) select EVB mode by setting both MODE SELECT
jumpers (on JB2) to the 0 position. Connect the supplied serial
cable between Adapt912 and a serial port on your computer. (With
some PCs, you will need a 9-pin to 25-pin adapter.) Run any ter-
minal program on your PC. Make sure your terminal program is set
to 9600, parity to NONE, # DATA BITS = 8, and #STOP BITS = 1.
Power up Adapt912, or press RESET button (SW1). The DBug12
prompt will appear in your terminal window. Type HELP to get a list
of DBug12 commands.

Some examples of suitable terminal programs are: Pro-
CommPlus (DOS), Windows Terminal program (included with
W3.1), HyperTerminal (included with W95/98), minilDE
(W95/98/NT freeware integrated development environment for
developing HC12 applications in assembler), or the Terminal
function in ImageCraft's Windows-based Integrated C Develop-
ment Environment for 68HC12.

3.2 Modes

Adapt912 (as shipped, with DBugl2 in Flash) can be
started up in any one of four modes, selected via jumper block JB2
(MODE SELECT), as follows:

PADO PAD1 MODE DESCRIPTION

0 0 EVB DBugl1? is executed from Flash

0 1 POD use as BDM pod via BDM OUT

1 0 JMP-EE run user program in EEPROM

1 1 BOOTLOAD load user code to Flash/EEPROM

3.3 Writing Your First Program

If you are already experienced with the 68HC11 family of
microcontrollers, writing 68HC12 programs will not present a big
challenge. In fact, you can use your existing 68HC11 assembly
code and re-assemble it for the 68HC12. There are a couple of

things to keep in mind when doing this. The first is assembler
syntax. You may need to edit your source file to conform to the
syntax and directives requirements of the HC12 assembler you are
using. There are several assemblers available, and each has its
own syntax to be aware of. Another departure from the 68HC11 is
that the register block default location is $0000 and the RAM is at
$0800. This means you would initialize the Stack Pointer to $0c00
(on the HC12, it should point to the address following the last RAM
location). Also, the HC12 bus speed is a lot higher than the HC11.
This will mean changing some initialization values for control reg-
isters and revising delay constants if you are doing software timing
loops.

There are several documents that detail the new instruc-
tions and addressing modes of the 68HC12, explain differences
from the 68HC11, and give examples of working with the 68HC12.
Whether you're programming in assembler or not, you should
definitely get the Motorola CPU12 Reference Manual and the ap-
plicable Application Notes, available from the Motorola Literature
Center or in Acrobat format from their website. See our RE-
SOURCES webpage for a link to Motorola and for links to dozens
of other useful sites. A highly recommended book is Programming
the Motorola M68HC12 Family, written by Motorola engineer Gor-
don Doughman (who is also the creator of DBug12). This book is
available from Technological Arts (order code PMM929).

34 Downloading Your Code to Adapt912

Once you have assembled your code with no errors, you
can download the resulting s-record file (filename.s19) to
Adapt912. The way in wish you accomplish this will depend on
which of the on-chip memory types your program will reside in
(RAM, EEPROM, or Flash). Connect the supplied serial cable
between connector J4 on your module and COM1 or COM2 of your
PC. (You can use a different COM port, but you will need to select
the port in the communication settings menu of your terminal pro-
gram).

EEPROM. If you wish to preserve DBug1? in Flash, you can
put your program in the 768-byte EEPROM, residing at $0d00; just

make sure to ORG your program there. You can use BOOTLOAD
mode or EVB mode to load your program into EEPROM. If you use
EVB mode, you can use the DBug12 bulk and load commands, to
erase EEPROM and load your .s19 file into EEPROM, respectively.
There are a few things you should keep in mind when using this
method. Programming EEPROM bytes requires approximately
10mS each. One way of allowing for this is to slow down the baud
rate in DBugl12. In EVB mode, enter baud 300 to change to 300
baud. Then change your terminal program settings to 300 baud
and reset Adapt912. Before loading your s-record file into EE-
PROM in EVB mode, make sure you clear the EE block protect
register (EEPROT) first by entering mm f1 0, and use the BULK
command to erase EEPROM if it has been previously pro-
grammed. In BOOTLOAD mode, these things are taken care of
automatically. NOTE: leave the jumpers of JB1 set to single-chip
mode (or remove them altogether, since single-chip is the default)
35 The Demo Program

The Adapt912 demo program has both "true vectors" and
"pseudo-vectors" included in the source code. To load the demo
program into a blank target chip, just assemble it “as-is” and use a
BDM pod to load the s-record. If you don’t have a BDM pod, you
can load the demo program into Adapt912 using the BOOTLOAD
mode of DBug12 (ie. Load it into the lower 30K of Flash). To do
this, delete the "true vectors" (leave pseudo-vectors intact) and
assemble it. Using BOOTLOAD mode, erase the Flash, and Pro-
gram the .s19 file into Flash, as described in section 4.1.

3.6 Adapt912 Expanded Mode

When in expanded mode, the 68HC912B32 uses ports A
and B as a multiplexed address/data bus, along with some control
lines from PORTE, to access up to 64K of external memory. Chip
modes are selected by jumpers on MODA and MODB (Jumper
Block JB1). In addition, there are several internal registers which
control and define the various possible configurations. For further
information on using expanded modes, refer to Motorola’s
M68HC912B/D data book.

A memory expansion card (Adapt912MX1) is available
from Technological Arts, offering 64Kx16 fast SRAM, and many

