
Order this document
by AN1774/D Rev. 1.0

Motorola Semiconductor Application Note

AN1774
Interfacing the MC68HC912B32 to an LCD Module
By Mark Glenewinkel

Field Applications Engineering
Austin, Texas

Introduction

More and more applications are requiring liquid crystal displays (LCD) to
communicate effectively to the outside world. This application note
describes the hardware and software interface needed to display
information from the MC68HC912B32 (B32).

Some LCD suppliers provide only the LCD glass so that the waveforms
needed to directly drive the LCD segments have to be generated by the
microcontroller (MCU) or microprocessor (MPU). Other LCD suppliers
provide an LCD module, which has all LCD glass and segment drivers
provided in one small packaged circuit board.

This application note uses an LCD module from Optrex Corporation, part
number DMC16207 (207). It utilizes a Hitachi LCD driver, HD44780, to
provide the LCD segment waveforms and a simple parallel port interface
that easily interfaces to an MCU or MPU bus.

Circuitry and example code are given to also demonstrate the ability of
providing pre-defined messages from memory to the display. The code
can be modified easily to take serial peripheral interface (SPI) and serial
communication interface (SCI) data and display it on the LCD module.
© Motorola, Inc., 1999 AN1774 Rev. 1.0

Application Note
LCD Module Hardware Interface

Optrex has many LCD module configurations that have varying display
lines and display line character lengths. The 207 module has a 2-line,
16-character per line display. Each character is displayed using a 5 x 7
pixel font matrix. The 207 module has a character generator ROM
capable of displaying ASCII characters.

The parallel interface bus can work with either 4-bit or 8-bit buses. Once
data is presented on the bus, it is latched by clocking the E pin on the
device. Depending on the RS pin, the data will be used as an instruction
or an ASCII character.

Pin Descriptions Table 1 describes the interface pins found on the 207 module.

Table 1. 207 Module Pinout

Pin
Number Signal I/O Function

1 VSS Power GND (ground)

2 VCC Power 4.5 volts to 5.5 volts

3 VEE Power LCD drive voltage

4 RS I
Selects registers

0: Instruction register (for write), address counter (for read)
1: Data register (for write and read)

5 R/W I
Selects read or write

0: Write
1: Read

6 E I Starts data read/write on falling edge

14–11 DB7–DB4 I/O
Four high order bidirectional 3-state data bus pins.

Used for data transfer and receive between the MCU and the 207.
DB7 can be used as a busy flag.

10–7 DB3–DB0 I/O
Four low order, bidirectional, 3-state data bus pins.

Used for data transfer and receive between the MCU and the 207.
These pins are not used during 4-bit operation.
AN1774

2 MOTOROLA

Application Note
LCD Module Hardware Interface
Bus Timing

Figure 1. Write Timing Operation

Figure 2. Read Timing Operation

Table 2. Bus Timing Electricals

Spec Symbol Min Typ Max Unit

Enable cycle time tCYCLE 500 — — ns

Enable pulse width (high level) PWEH 230 — — ns

Enable rise and decay time tEr, tEf — — 20 ns

Address setup time, RS, R/W, E tAS 40 — — ns

Data delay time tDDR — — 160 ns

Data setup time tDSW 80 — — ns

Data hold time (write) tH 10 — — ns

Data hold time (read) tDHR 5 — — ns

Address hold time tAH 10 — — ns

RS

R/W

E

DB0–DB7

tAS tAH

tCYCLE

PWEH

tEr

tEf

tDSW tH

VALID DATA

RS

R/W

E

DB0–DB7

tAS tAH

tCYCLE

PWEH

tEr

tEf

tDDR tDHR

VALID DATA
AN1774

MOTOROLA 3

Application Note
Bus Interface Figure 3 and Figure 4 show examples of 8-bit and 4-bit timing
sequences, respectively.

NOTE: A BF (busy flag) check is not needed if the maximum instruction
execution time is respected before sending another instruction.

Figure 3. 8-Bit Bus Timing Sequence

Figure 4. 4-Bit Bus Timing Sequence

For 4-bit interface data, only four bus lines (DB7–DB4) are used for
transfer.

Bus lines DB3–DB0 are disabled.

RS

R/W

E

INTERNAL

DB7–DB0 DATA

OPERATION

BUSY
NOT BUSY DATA

INSTRUCTION
WRITE

BUSY FLAG
CHECK

BUSY FLAG
CHECK

INSTRUCTION
WRITE

EXEC TIME

RS

R/W

E

D7–D4 D3–D0 BUSY AC3

NOT

INSTRUCTION WRITE INSTRUCTION WRITE

EXEC TIME

BUSY FLAG
CHECK

BUSY AC3 D7–D4 D3–D0

BUSY FLAG
CHECK

INTERNAL

DB7–DB0

OPERATION
AN1774

4 MOTOROLA

Application Note
LCD Module Software Interface
The data transfer is completed after the 4-bit data has been transferred
twice.

The four high order bits are transferred first (DB7–DB4), and then the
low order bits are transferred (DB3–DB0).

LCD Module Software Interface

LCD Instruction
Commands

The 207 module has many different configurations that can be
implemented easily by sending the correct function command to the
device. These commands are listed in Table 3 followed by an
explanation of each function they execute.

Table 3. 207 Module Instruction Code

Instruction RS R W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Execution

Time
(max)

Clear display 0 0 0 0 0 0 0 0 0 1 1.64 ms

Return cursor home 0 0 0 0 0 0 0 0 1 x 1.64 ms

Entry mode set 0 0 0 0 0 0 0 1 I/D S 40 µs

Display on/off control 0 0 0 0 0 0 1 D C B 40 µs

Cursor or display shift 0 0 0 0 0 1 S/C R/L x x 40 µs

Function set 0 0 0 0 1 DL N F x x 40 µs

Set CGRAM address 0 0 0 1 ACG ACG ACG ACG ACG ACG 40 µs

Set DDRAM address 0 0 1 ADD ADD ADD ADD ADD ADD ADD 40 µs

Read busy flag and
address

0 1 BF AC AC AC AC AC AC AC 0 µs

Write data to CG
or DDRAM

1 0 D7 D6 D5 D4 D3 D2 D1 D0 40 µs

Read data from CG
or DDRAM

1 1 D7 D6 D5 D4 D3 D2 D1 D0 40 µs

DDRAM: Display data RAM
CGRAM: Character generator RAM
ACG: CGRAM address
ADD: DDRAM address; corresponds to cursor address
AC: Address counter used for both DDRAM and CGRAM addresses
AN1774

MOTOROLA 5

Application Note
Clear Display Clear display writes space code $20 into all DDRAM addresses. It then
sets DDRAM address 0 into the address counter and returns the display
to its original status if it was shifted. In other words, the display
disappears and the cursor or blinking goes to the left edge of the first line
of the display. I/D of entry mode is set to 1 (increment mode). S of entry
mode is left unchanged.

Return Cursor
Home

Return cursor home sets the DDRAM address 0 into the address counter
and returns the display to its original status if it was shifted. The DDRAM
contents do not change.

The cursor or blinking goes to the left edge of the first line of the display.

Entry Mode Set I/D — Increments (I/D = 1) or decrements (I/D = 0) the DDRAM address
by 1 when a character code is written into or read from DDRAM. The
cursor or blinking moves to the right when incremented by 1 and to the
left when decremented by 1. The same applies to writing and reading of
CGRAM.

S — Shifts the entire display either to the right (I/D = 0) or to the left
(I/D = 1) when S is 1. The display does not shift if S is 0. If S is 1, it will
seem as if the cursor does not move but the display does. The display
does not shift when reading from DDRAM. Also, writing into or reading
out from CGRAM does not shift the display.

Display On/Off
Control

D — The display is on when D = 1 and is off when D = 0. When off, the
display data remains in DDRAM, but it can be displayed instantly by
setting D = 1.

C — The cursor is displayed when C = 1 and not displayed when
C = 0. Even if the cursor disappears, the function of I/D or other
specifications will not change during display data write. The cursor is
displayed using five dots in the eighth line of the 5 x 8 dot character.

B — The character indicated by the cursor blinks when B = 1.
The blinking is displayed as switching between all blank dots and
displayed characters at a speed of 409.6-ms intervals when fOSC
(HD44780 operating frequency) is 250 kHz. The cursor and blinking
can be set to display simultaneously. (The blinking frequency changes
according to fOSC. For example, when fOSC, is 270 kHz,
409.6 x (250/270) = 379.2 ms.)
AN1774

6 MOTOROLA

Application Note
LCD Module Software Interface
Cursor or Display
Shift

Cursor or display shift shifts the cursor position or display to the right or
left without writing or reading display data. (See Table 4 .) This function
is used to correct or search the display. In a 2-line display, the cursor
moves to the second line when it passes the 40th digit of the first line.
The first and second line displays will shift at the same time.

When the displayed data is shifted repeatedly, each line moves only
horizontally. The second line display does not shift into the first line
position.

The address counter (AC) contents will not change if the only action
performed is a display shift.

Function Set DL — Sets the interface data length. Data is sent or received in 8-bit
lengths (DB7 to DB0) when DL = 1 and in 4-bit lengths (DB7 to DB4)
when DL = 0. When 4-bit length is selected, data must be sent or
received twice.

N — Sets the number of display lines

F — Sets the character font

NOTE: Perform the function set instruction at the beginning of the program
before executing any instructions (except for the read busy flag and
address instruction). From this point, the function set instruction cannot
be executed unless the interface data length is changed.

Table 4. Cursor and Display Shift Combination

S/C R/L Description

0 0 Shifts the cursor position to the left; AC is decremented by 1

0 1 Shifts the cursor position to the right; AC is incremented by 1

1 0 Shifts the entire display to the left; the cursor follows the display shift

1 1 Shifts the entire display to the right; the cursor follows the display shift
AN1774

MOTOROLA 7

Application Note
Set CGRAM
Address

Set CGRAM address sets the CGRAM binary address ACG5–ACG0 into
the address counter. Data is written to or read from the MCU for
CGRAM.

Set DDRAM
Address

Set DDRAM address sets the DDRAM binary address ADD6–ADD0 into
the address counter. Data is written to or read from the MCU for
DDRAM.

Read Busy Flag
and Address

Read busy flag and address reads the busy flag (BF) indicating that the
system is now internally operating on a previously received instruction.
If BF = 1, the internal operation is in progress. The next instruction will
not be accepted until BF is reset to 0. Check the BF status before the
next write operation. At the same time, the value of the address counter
in binary (AC6–AC0) is read out. This address counter is used by both
CGRAM and DDRAM addresses, and its value is determined by the
previous instruction. The address contents are the same as for
instructions set CGRAM address and set DDRAM address.

Write Data
to CGRAM
or DDRAM

Write data to CGRAM or DDRAM writes 8-bit data to CGRAM or
DDRAM. To write into CGRAM or DDRAM is determined by the previous
specification of the CGRAM or DDRAM address setting. After a write,
the address is incremented or decremented automatically by 1
according to the entry mode. The entry mode also determines the
display shift.

Read Data
from CGRAM
or DDRAM

Read data from CGRAM or DDRAM reads 8-bit data from CGRAM or
DDRAM. The previous designation determines whether CGRAM or
DDRAM is to be read. Before entering this read instruction, either
CGRAM or DDRAM address set instruction must be executed. If not
executed, the first read data will be invalid. When serially executing read
instructions, the next address data normally is read from the second
read. The address set instructions need not be executed just before this
read instruction when shifting the cursor by the cursor shift instruction
(when reading out of DDRAM).
AN1774

8 MOTOROLA

Application Note
LCD Module Software Interface
The operation of the cursor shift instruction is the same as the set
DDRAM address instruction. After a read, the entry mode automatically
increases or decreases the address by 1. However, the display shift is
not executed regardless of the entry mode.

Address Map Table 5 shows the address map for the HD44780. The character
positions of the LCD module are shown in the first row of the table with
the addresses shown beneath them. The 207 uses only the first 16
addresses.

NOTE: The addresses are seven bits wide and when writing to the DDRAM, the
MSB (bit 7) is always a 1. Therefore, to write to address $02, the 8-bit
data sent to the 207 will be $82 or binary 10000010%.

Understand that when the display is shifted, the whole address map is
used. In other words, when a shift right is executed, the character at
address $27 is moved to position 1 of the first line of the display.

Initialization
Routines

To ensure proper initialization of the 207 module, a sequence of
instruction codes must be executed. These instructions set the data bus
width, font type, and number of display lines. In addition, the LCD is
cleared, and the entry mode for data is set.

Figure 5 shows the power-on reset initialization for an 8-bit data bus,
while Figure 6 shows the power-on reset initialization for a 4-bit data
bus.

Table 5. LCD Address Map

Bit
1

Bit
2

Bit
3

Bit
4

Bit
5 ... Bit

16 ... Bit
39

Bit
40

$00 $01 $02 $03 $04 ... $0F ... $26 $27

$40 $41 $42 $43 $44 ... $4F ... $66 $67
AN1774

MOTOROLA 9

Application Note
Figure 5. Power-On Reset 8-Bit Initialization

POWER ON

WAIT FOR MORE THAN 15 MS

AFTER VCC RISES TO 4.5 V

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 00 1 1 x x x x

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 00 1 1 x x x x

WAIT FOR MORE THAN 0.1 MS

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 00 1 1 x x x x

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 00 1 1 N F x x

0 0 00 0 0 1 0 0 0

0 0 00 0 0 0 0 0 1

0 0 00 0 0 0 1 I/D S

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

BF CAN BE CHECKED AFTER
THESE INSTRUCTIONS
FUNCTION SET
INTERFACE IS 8 BITS
SPECIFY DISPLAY LINES
AND FONTS. SETTINGS
CANNOT BE CHANGED AFTER
THIS POINT.

DISPLAY OFF

DISPLAY CLEAR

ENTRY MODE SET

WAIT FOR MORE THAN 4.1 MS
AN1774

10 MOTOROLA

Application Note
LCD Module Software Interface
Figure 6. Power-On Reset 4-Bit Initialization

POWER ON

WAIT FOR MORE THAN 15 MS

AFTER VCC RISES TO 4.5 V

RS R/W DB7 DB6 DB5 DB4

0 0 00 1 1

WAIT FOR MORE THAN 0.1 MS

RS R/W

0 0 00 1 0

0 0 FN X X

0 0 00 0 0

0 0 01 0 0

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

FUNCTION SET

BF CANNOT BE CHECKED
BEFORE THIS INSTRUCTION

INTERFACE IS 8 BITS

BF CAN BE CHECKED AFTER
THESE INSTRUCTIONS

FUNCTION SET
INTERFACE IS 4 BITS

DISPLAY OFF

DISPLAY CLEAR

ENTRY MODE SET

WAIT FOR MORE THAN 4.1 MS

RS R/W DB7 DB6 DB5 DB4

0 0 00 1 1

RS R/W DB7 DB6 DB5 DB4

0 0 00 1 1

0 0 00 0 0

0 0 00 0 1

0 0 00 0 0

0 0 10 I/D S

0 0 00 1 0

FUNCTION SET
INTERFACE IS 4 BITS
SPECIFY DISPLAY LINES AND FONTS
SETTINGS CANNOT BE CHANGED

DB7 DB 6 DB5 DB4
AN1774

MOTOROLA 11

Application Note

12
MC68HC912B32 Hardware Interface

The B32 is a 16-bit MCU device with standard on-chip peripherals
including:

• 32 Kbytes of FLASH EEPROM

• 1 Kbyte of RAM

• 768 bytes of EEPROM

• Asychronous serial communications interface (SCI)

• Serial peripheral interface (SPI)

• 8-channel, 16-bit timer

• 8-channel, 8-bit analog-to-digital converter (ADC)

• 4-channel pulse-width modulator (PWM)

• J1850-compatible byte data link communications module (BDLC)

The B32 has a maximum of 63 I/O (input/output) pins in single-chip
mode. These I/O pins share functionality with the on-chip peripheral
modules. Rarely will a system have all of these I/O pins available. The
LCD module works in either an 8-bit or 4-bit data bus. The data bus size
should be defined from the I/O, peripheral, and code space usage of the
application. Three I/O pins are also needed for bus control.

The schematic used for testing the B32-to-207 interface on the
MC68HC912B32 evaluation board is shown in Figure 7 . The test circuit
was designed to use either a 4-bit or 8-bit databus. Although the R/W pin
on the 207 is connected to the B32, it may be grounded if only writes to
the LCD are executed. Since we cannot check the BF flag, the delay
times stated in Table 3 must be observed.

Although these routines were tested on an MC68HC912B32 device, any
HC12 device with enough memory and I/O can execute these routines.
A simple change in the memory map should allow the code to be ported
to other HC12s.
AN1774

MOTOROLA

Application Note
MC68HC912B32 Software Interface
Figure 7. B32-to-207 Interface Test Circuit

MC68HC912B32 Software Interface

The software written to demonstrate the MC68HC912B32-to-LCD
module interface is shown in sections titled Flowcharts , 4-Bit Bus
Code , and 8-Bit Bus Code .

The flowchart roughly sketches out the routines.

The code was written to take pre-defined messages in ROM and easily
display them by calling a subroutine. If the B32 is receiving messages
from the SPI or SCI, put the ASCII data in a temporary RAM buffer and
change the message routines to start reading ASCII characters from the
start of the buffer.

10 k

POT

+5 V

DMC16207 LCD MODULE

1

2

3

VCC

VSS

VEE

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

14 13 12 11 10 9 8 7

R/W

RS

E

5

4

6

PB2

PB1

PB0

B32 EVB

INTERFACE

NOTE: FOR 4-BIT BUS INTERFACE, DB3–DB0 PINS ARE NOT CONNECTED.
AN1774

MOTOROLA 13

Application Note
Development Tools

The interface was created and tested using these development tools:

• M68HC12B32EVB — Motorola’s MC68HC912B32 evaluation
board

• WIN IDE— P&E Microcomputer Systems integrated development
environment, version 1.02

• CASM12W — P&E Microcomputer Systems HC12 assembler,
version 3.08

• ICD12W — P&E Microcomputer Systems HC12 in-circuit
debugger, version 1.04 build B

References

MC68HC912B32 Technical Summary, Motorola document order
number MC68HC912B32TS/D, 1997.

M68HC12 CPU12 Reference Manual, Motorola document order number
CPU12RM/AD, 1997.

DMC-16207 Digikey #73-1025-ND.

1997 Optrex LCD Databook Digikey #73-1001-ND.

Motorola’s HC12 website:

http://www.mcu.motsps.com/hc12/index.html
AN1774

14 MOTOROLA

Application Note
Flowcharts
Flowcharts

Figure 8. Main Flowchart

START

INITIALIZE PORT PINS
WAIT FOR 15 MS

SEND FUNCTION CODE $38
WAIT FOR 4.1 MS

SEND FUNCTION CODE $38
WAIT FOR 0.1 MS

SEND FUNCTION CODE $38

FUNCTION CODE $38
8- BIT BUS, 2 ROWS, 5 X 7 DOTS

DISPLAY CODE $0C
DISPLAY ON, CURSOR OFF, NO BLINKING

CLEAR DISPLAY CODE $01
CLEAR DISPLAY, CURSOR AT ADDR $00

WAIT FOR 1.6 MS

ENTRY MODE CODE $06
INCREMENT, NO DISPLAY SHIFT

JUMP SUB TO MESSAGE1

JUMP SUB TO MESSAGE2

INFINITE LOOP

JSR TO LCD_WRITE

JSR TO LCD_WRITE

JSR TO LCD_WRITE

JSR TO LCD_WRITE
AN1774

MOTOROLA 15

Application Note
Figure 9. LCD_Write Subroutine Flowchart

Figure 10. LCD_ADDR Subroutine Flowchart

LCD_WRITE

STORE ACCA TO LCD DATA PORT

CLOCK E

WAIT FOR 40 µs

RETURN FROM SUB

LCD_ADDR

STORE ACCA TO LCD DATA PORT

CLOCK E

WAIT FOR 40 µs

RETURN FROM SUB

CLEAR RS, INSTRUCTION MODE

SET RS, INSTRUCTION MODE
AN1774

16 MOTOROLA

Application Note
Flowcharts
Figure 11. Message Subroutine Flowchart

MESSAGE

LOAD ACCA WITH LCD ADDRESS

JSR TO LCD_ADDR

CLEAR INDEX REGISTER X

LOAD ACCA FROM X POINTING
TO MESSAGE BUFFER

ACCA = 0?

END OF BUFFER?

JSR TO LCD_WRITE

INCREMENT INDEX REGISTER X

RETURN FROM SUB

YES

NO
AN1774

MOTOROLA 17

Application Note
8-Bit Bus Code

**
*
* File name: H12_LCD8.ASM
* Example Code for LCD Module (DMC16207) using 8-bit bus
* interfacing with the MC68HC912B32
* Ver: 1.0
* Date: September 6, 1998
* Author: Mark Glenewinkel
* Motorola Field Applications
* Assembler: P&E CASM12W ver 3.08
*
*For code explanation and flowcharts, please consult Motorola Application Note
* "Interfacing the MC68HC912B32 to an LCD Module" Literature # AN1774/D
*
* Note: Code originates in RAM instead of FLASH
*
**

*** SYSTEM DEFINITIONS AND EQUATES **
*** Internal Register Definitions
PORTA EQU $00 ;LCD data bus
PORTB EQU $01 ;LCD control signals
DDRA EQU $02 ;data direction for PortA
DDRB EQU $03 ;data direction for PortB

*** Application Specific Definitions
LCD_DATA EQU $00 ;PORTA
LCD_CTRL EQU $01 ;PORTB
E EQU 1T ;PORTB, bit 0
RW EQU 4T ;PORTB, bit 2
RS EQU 2T ;PORTB, bit 1

*** Memory Definitions
RAM_START EQU $0800 ;start of RAM mem
RAM_VAR EQU $0BF0 ;start of RAM variables
MSG_STORAGE EQU $0B00 ;start of message block

*** Vectors
RESET EQU $FFFE ;vector for reset

*** RAM VARIABLES **
ORG RAM_VAR

TIME DB 1 ;used for delay time
*** MAIN ROUTINE ***

ORG RAM_START ;start at begining of RAM
*** Initialize the Stack Pointer

lds #$0BFF ;init SP, top or RAM
AN1774

18 MOTOROLA

Application Note
8-Bit Bus Code
*** Intialize Ports
START clr LCD_CTRL ;clear LCD_CTRL

clr LCD_DATA ;clear LCD_DATA
movb #$FF,DDRA ;PortA output
movb #$FF,DDRB ;PortB output

*** INITIALIZE THE LCD
*** Wait for 15ms

movb #150T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
movb #$38,LCD_DATA ;LCD init command
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E

*** Wait for 4.1ms
movb #41T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
movb #$38,LCD_DATA ;LCD init command
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E

*** Wait for 100 us
movb #1T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
ldaa #$38 ;LCD init command
jsr LCD_WRITE ;write data to LCD

*** Send Function Set Command
*** 8 bit bus, 2 rows, 5x7 dots

ldaa #$38 ;function set command
jsr LCD_WRITE ;write data to LCD

*** Send Display Ctrl Command
*** display on, cursor off, no blinking

ldaa #$0C ;display ctrl command
jsr LCD_WRITE ;write data to LCD

*** Send Clear Display Command
*** clear display, cursor addr=0

ldaa #$01 ;clear display command
jsr LCD_WRITE ;write data to LCD
movb #16T,TIME ;set delay time for 1.6ms
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Entry Mode Command
*** increment, no display shift

ldaa #$06 ;entry mode command
jsr LCD_WRITE ;write data to LCD

*** SEND MESSAGES
*** Messages have address and content predefined

jsr MESSAGE1 ;send Message1
jsr MESSAGE2 ;send Message2

DUMMY bra DUMMY ;done with example
AN1774

MOTOROLA 19

Application Note
*** SUBROUTINES **
*** Routine creates a delay according to the formula
*** TIME*~100 µs using an 8MHz internal bus
*** Cycle count per instruction shown
VAR_DELAY ldab #199T ;1
L1 nop ;1

dbne B,L1 ;3
dec TIME ;4
bne VAR_DELAY ;3
rts ;5

*** Routine sends LCD Data
LCD_WRITEstaa LCD_DATA

bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E
ldaa #107T ;40 µs delay for LCD

L2 dbne A,L2 ;3
rts

*** Routine sends LCD Address
LCD_ADDR bclr LCD_CTRL,RS ;LCD in command mode

staa LCD_DATA
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E
ldaa #107T ;40 µs delay for LCD

L4 dbne A,L4 ;3
bset LCD_CTRL,RS ;LCD in data mode
rts

*** Message Routines
MESSAGE1 ldaa #$84 ;addr = $04

jsr LCD_ADDR ;send addr to LCD
ldx #0

L3 ldaa MSG1,X ;load AccA w/char from msg
beq OUTMSG1 ;end of msg?
jsr LCD_WRITE ;write data to LCD
inx ;increment X
bra L3 ;loop to finish msg

OUTMSG1 rts

MESSAGE2 ldaa #$C4 ;addr = $44
jsr LCD_ADDR ;send addr to LCD
ldaa MSG2,X ;load AccA w/char from msg
beq OUTMSG2 ;end of msg?
jsr LCD_WRITE ;write data to LCD
inx ;increment X
bra L5 ;loop to finish msg

OUTMSG2 rts

*** MESSAGE STORAGE **
ORG MSG_STORAGE

MSG1 db 'Motorola'
db 0

MSG2 db 'HC12 MCU'
db 0

*** VECTOR TABLE ***
ORG RESET
DW START
AN1774

20 MOTOROLA

Application Note
4-Bit Bus Code
4-Bit Bus Code

**
*
* File name: H12_LCD4.ASM
* Example Code for LCD Module (DMC16207) using 4-bit bus
* interfacing with the MC68HC912B32
* Ver: 1.0
* Date: September 6, 1998
* Author: Mark Glenewinkel
* Motorola Field Applications
* Assembler: P&E CASM12W ver 3.08
*
* For code explanation and flow charts, please consult Motorola Application Note
* “Interfacing the MC68HC912B32 to an LCD Module” Literature # AN1774/D
*
* Note: Code originates in RAM instead of FLASH
*
**

*** SYSTEM DEFINITIONS AND EQUATES ***
*** Internal Register Definitions
PORTA EQU $00 ;LCD data bus
PORTB EQU $01 ;LCD control signals
DDRA EQU $02 ;data direction for PortA
DDRB EQU $03 ;data direction for PortB

*** Application Specific Definitions
LCD_DATA EQU $00 ;PORTA
LCD_CTRL EQU $01 ;PORTB
E EQU 1T ;PORTB, bit 0
RW EQU 4T ;PORTB, bit 2
RS EQU 2T ;PORTB, bit 1

*** Memory Definitions
RAM_START EQU $0800 ;start of RAM mem
RAM_VAR EQU $0BF0 ;start of RAM variables
MSG_STORAGE EQU $0B00 ;start of message block

*** Vectors
RESET EQU $FFFE ;vector for reset

*** RAM VARIABLES **
ORG RAM_VAR

TIME DB 1 ;used for delay time
*** MAIN ROUTINE ***

ORG RAM_START ;start at beginning of RAM
*** Initialize the Stack pointer

lds #$0BFF ;init SP, top of RAM

*** Initialize Ports
START clr LCD_CTRL ;clear LCD_CTRL

clr LCD_DATA ;clear LCD_DATA
movb #$FF,DDRA ;PortA output
movb #$FF,DDRB ;PortB output
AN1774

MOTOROLA 21

Application Note
*** INITIALIZE THE LCD
*** Wait for 15ms

movb #150T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
movb #$30,LCD_DATA ;LCD init command
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E

*** Wait for 4.1ms
movb #41T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
movb #$30,LCD_DATA ;LCD init command
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E

*** Wait for 100 us
movb #1T,TIME ;set delay time
jsr VAR_DELAY ;sub for 0.1ms delay

*** Send Init Command
ldaa #$30 ;LCD init command
jsr LCD_WRITE ;write data to LCD

*** Send Function Set Command
*** 4 bit bus, 2 rows, 5x7 dots

ldaa #$20 ;function set command
jsr LCD_WRITE ;write data to LCD
ldaa #$20 ;function set command
jsr LCD_WRITE ;write data to LCD
ldaa #$80 ;function set command
jsr LCD_WRITE ;write data to LCD

*** Send Display Ctrl Command
*** display on, cursor off, no blinking

ldaa #$00 ;function set command
jsr LCD_WRITE ;write data to LCD
ldaa #$C0 ;display ctrl command
jsr LCD_WRITE ;write data to LCD

*** Send Clear Display Command
*** clear display, cursor addr=0

ldaa #$00 ;clear display command
jsr LCD_WRITE ;write data to LCD
movb #16T,TIME ;set delay time for 1.6ms
jsr VAR_DELAY ;sub for 0.1ms delay
ldaa #$10 ;clear display command
jsr LCD_WRITE ;write data to LCD
movb #16T,TIME ;set delay time for 1.6ms
jsr VAR_DELAY ;sub for 0.1ms delay
AN1774

22 MOTOROLA

Application Note
4-Bit Bus Code
*** Send Entry Mode Command
*** increment, no display shift

ldaa #$00 ;entry mode command
jsr LCD_WRITE ;write data to LCD
ldaa #$60 ;entry mode command
jsr LCD_WRITE ;write data to LCD

*** SEND MESSAGES
*** Messages have address and content predefined

jsr MESSAGE1 ;send Message1
jsr MESSAGE2 ;send Message2

DUMMY bra DUMMY ;done with example

*** SUBROUTINES **
*** Routine creates a delay according to the formula
*** TIME*~100 µs using an 8MHz internal bus
*** Cycle count per instruction shown
VAR_DELAY ldab #199T ;1
L1 nop ;1

dbne B,L1 ;3
dec TIME ;4
bne VAR_DELAY ;3
rts ;5

*** Routine sends LCD Data
LCD_WRITE staa LCD_DATA

bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E
ldaa #107T ;40 µs delay for LCD

L2 dbne A,L2 ;3
rts

*** Routine sends LCD Address
LCD_ADDR bclr LCD_CTRL,RS ;LCD in command mode

staa LCD_DATA
bset LCD_CTRL,E ;clock in data
bclr LCD_CTRL,E
ldaa #107T ;40 µs delay for LCD

L4 dbne A,L4 ;3
bset LCD_CTRL,RS ;LCD in data mode
rts

*** Message Routines
MESSAGE1 ldaa #$80 ;addr = $04 MSB

jsr LCD_ADDR ;send addr to LCD
ldaa #$40 ;addr = $04 LSB
jsr LCD_ADDR ;send addr to LCD
ldx #0

L3 ldaa MSG1,X ;load AccA w/char from msg
beq OUTMSG1 ;end of msg?
jsr LCD_WRITE ;write data to LCD
ldaa MSG1,X ;load AccA w/char from msg
asla ;shift LSB to MSB
asla
asla
asla
AN1774

MOTOROLA 23

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217.

1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

jsr LCD_WRITE ;write data to LCD
inx ;increment X
bra L3 ;loop to finish msg

OUTMSG1 rts

MESSAGE2 ldaa #$C0 ;addr = $44 MSB
jsr LCD_ADDR ;send addr to LCD
ldaa #$40 ;addr = $44 LSB
jsr LCD_ADDR ;send addr to LCD
ldx #0

L5 ldaa MSG2,X ;load AccA w/char from msg
beq OUTMSG2 ;end of msg?
jsr LCD_WRITE ;write data to LCD
ldaa MSG2,X ;load AccA w/char from msg
asla ;shift LSB to MSB
asla
asla
asla
jsr LCD_WRITE ;write data to LCD
inx ;increment X
bra L5 ;loop to finish msg

OUTMSG2 rts
*** MESSAGE STORAGE **

ORG MSG_STORAGE
MSG1 db 'Motorola'

db 0
MSG2 db 'HC12 MCU'

db 0

*** VECTOR TABLE ***
ORG RESET
DW START
AN1774/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Introduction
	LCD Module Hardware Interface
	Pin Descriptions
	Bus Timing
	Bus Interface

	LCD Module Software Interface
	LCD Instruction Commands
	Clear Display
	Return Cursor Home
	Entry Mode Set
	Display On/Off Control
	Cursor or Display Shift
	Function Set
	Set CGRAM Address
	Set DDRAM Address
	Read Busy Flag and Address
	Write Data to CGRAM or DDRAM
	Read Data from CGRAM or DDRAM

	Address Map
	Initialization Routines

	MC68HC912B32 Hardware Interface
	MC68HC912B32 Software Interface
	Development Tools
	References
	Flowcharts
	8-Bit Bus Code
	4-Bit Bus Code

