M68EVB912BC32/D1

October 1997

M68EVB912BC32
EVALUATION BOARD
USER'SMANUAL

© MOTOROLA Ltd., 1997; All Rights Reserved

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function or desgn. Motorola does not assume any liability arisng out of the gpplication or use
of any product or circuit described herein; neither does it convey any license under its patent rights nor
the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other gpplications intended to
support or sugtain life, or for any other gpplication in which the falure of the Motorola product could
cregte a Stuation where persona injury or desth may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized gpplication, Buyer shdl indemnify and hold Motorola
and its officers, employees, subsdiaries, afiliates, and distributors harmless againg dl dams, codts,
damages, and expenses, and reasonable attorney fees arisng out of, directly or indirectly, any clam of
persond injury or deeth associated with such unintended or unauthorized use, even if such claim dleges
that Motorola was negligent regarding the design or manufacture of the part.

ii 68EVB912BC32UM

@ MOTOROLA CONTENTS

TABLE OF CONTENTS

CHAPTER 1 GENERAL INFORMATION

LLINTRODUCTION. . ..oiitiitiiiiieesii ettt et n e n e n e sre e sr e n s 1-1
1.2 GENERAL DESCRIPTION AND FEATURES.c.coiiiiiee s 1-1
1.3 FUNCTIONAL OVERVIEW. ...ttt 1-4
1.4 EXTERNAL EQUPMENT REQUIREMENTSooiiiiiiee s 1-6
1.5 EVB SPECIFICATIONSottt 1-7
1.6 CUSTOMER SUPPORT ...ttt e 1-8

CHAPTER 2 CONFIGURATION AND SETUP

2.1 UNPACKING AND PREPARATION. ...ttt sttt eenes 2-1
2.2 EVB CONFIGURATION ...ttt st sttt st st 2-1
2.3EVB TO POWER SUPPLY CONNECTIONocciiiiinierininineseeree e 2-2
24 EVB TO TERMINAL CONNECTION......cctiiiiiienie ettt eenes 2-2
25 TERMINAL COMMUNICATIONS SETUP.......oiiiiiiriereseseeeee e 2-4
2.5.1 COMMUNICALION PAAMELENS.......ccuiiiiitiieieieie ettt b e neas 2-4
2.5.2 DUMB-TEMING SEIUD ...ecuveeeiecieeie ettt e e sae e e sneenteeseesneeseeneensens 2-4
2.5.3 HOS-COMPULET SELUDeovieiiieiie st esiee ettt e et ssae e s et esseesbeesseesnreensenenns 2-4
254 Changing the BaUO RELE............ccoeiieieeie ettt sttt neeaeenaenneas 2-4

CHAPTER 3 OPERATION

3. LOPERATING MODES.........o oottt st s sb et et sre e 3-1
30 = o o =SSR 3-1
3.1.2 JUMP-EEPROM MOGE........coiiiieiiietieiinieiesiesie e ste st seesae e ssesnessessessesseeneenens 3-1
3.1.3POD (Probe) IMOUE.........cceeiiieitiecie ettt e e se e ereesneeenns 3-2

3131 Target TYPES SUPPOIEX........cciuiiiiieiiee it e see ettt re e erneennas 3-2
3132 Target MCU CharaCteiStiCS.......cccueeiieiiee et etee et 3-2
3.1.3.3 Programming the Target’ SEEPROM.........cccooiiiiiiiiicce et 3-3
3.1.3.4 Controlling Target EXECULION...........ccouiiiiieiie ettt 3-3

68EVB912BC32UM/D iii

CONTENTS @ MOTOROLA

3. LA BOOTLOAD MOUE......c.ceiiiiriiriesiestesiesiesee et st sttt aeeessestesbesbe s sesse s e eneeneas 3-3
B2 STARTUP ...t bttt b bt b e bt b et e et e b e s b e b e s beebeeneene e e 3-3
3.2.1 SHATUP PrOCEOUNE......c.eeeeeeeiece ettt sttt e et s ae et eenaenteeneesneeneeneenrens 3-3
3.2.2 OpErating PrOCEOUINESeeiiieieceesieesteeee st et s e s e e e e teeeesseesseenaesneenteeneesseenseeneensens 3-4
S22 L EVB MO ..ottt sttt bt bbbt 3-4
3.2.2.2 JUMP-EEPROM MOGE.........cciiiiiiiriieieiesiesie sttt 3-4
R © B I o L= SRS 3-5
3.2.2.4 BOOTLOAD MOUE.......coiiiiiriiriinieniieie ettt st sne b e s 3-6

BB RESET ...ttt e e bbb bRttt e b et b be e Reebeene et neens 3-6
3.4 ABORTING A USER PROGRAM ...ttt sttt st st 3-6
3.5 USING D-BUGI12 COMMANDS.......coiiitiitiniieieiesee ettt st st 3-7
3.5.1 CommaNG-LiNe PrOML.........ccoveiieiieiieiesiesteeiesee e es et sae e ste e e sneeneeneenneas 3-7
3.5.2 ENtering COMMIBNGS.ccviiieiieeieciesieeitesee e ete s e sse e esseesteeeesseesseenaesneesseeneesneeseeneensens 3-7
3.5.3 COMMENG-SEL SUMIMBIYceiveeieiieesieeieeeesteeeeseesreeseesseesteeeesseesseenaesseessesssesseeseaneensens 3-8
3.6 D-BUGI12 COMMAND SET ...ttt se e sttt nes 3-10
ASTMDIE/DISASIEMDIES ...t 3-11
SELBAUD REE.....c.eicveieeiieieeee ettt b bbbt 3-14
=] [0 o1 | RRRS 3-15
RSz 0o = U 3-16
BUIK EraS2 EEPROMooiiiiiiieee ettt st 3-18
Cal SUDIOULINE ...ttt sttt et st esb et e b bt ene e e e e ens 3-19
SPECITY TAGEL MCU DEVICE......eceeeceeeiece ettt sttt ae e e e nteeaesneene e 3-20
Specify Target EEPROM Base AQUIESS........ccueeiiiieiecee ettt sae st ae et 3-23
Erase Target Flash EEPROM.........cccoiiiiiiiiene et 3-25
Program Target Flash EEPROMooioiiiii ettt 3-27
(GO EXECULE @ USEN PrOQIaM.......cciiiiiiiiiiieciies sttt siee ettt ba e sbe e s e e e e nnneas 3-29
(€70 I | ST 3-30
ONSCrEEN HEIP SUMIMEIY.....c..eiieicieciecie sttt sttt e e sne e e reenteeneesneeneens 3-31
LOB0 ST RECOM FlE ...ttt bbb 3-33
VLS 0o Y 1S o = Y PSS 3-34
MeMONY Diplay, WOcceeieeiecee ettt e sn e e e e nreennennes 3-35
VL= 1000 VA1 o U 3-36
MeMOrY MOy, WOIQ.........cceeieee ettt e et ens 3-38
MOVE MEMONY BIOCK........eciieiieiieeie ettt sttt e sseenneennesneenteennennes 3-40
REMOVE BrEAKPOINES.......c.veeiecie ettt et e te e sre e s e e e e s neenreeneennes 3-41
68EVB912BC32UM/D

@ MOTOROLA CONTENTS

RS 0 1S L= 1S o = YU 3-42
Specify Target EEPROM Register ACArESS..........oceeiiieieieesieee ettt 3-43
RESEL TAGEL IMCU ...t bbbttt b bbbt 3-45
RS 0 S L= 1Y 070) S 3-46
Stop EXecution 0N TargEt MCU........cooiieecece ettt ne e 3-47
LI & PP PR OPRRPRROR 3-48
Digolay Memory in ST RECOrd FOMMEL..........cccueieeieieceeseee et 3-50
Verify SRecord File agaiNst MEMONY.........ccciiieiieieiiese et ee et eesneas 3-51
MOGIfY REGIEN VEUE.cviieie ettt sttt et nn e e s e e nteennenns 3-52
3.7 OFF-BOARD CODE GENERATION ..ottt st s eenes 3-54
BB MEMORY USAGE ..ottt ettt bbb nes 3-54
GRS I D<o] oo o P 3-54
e I 1 = 1010 Y 1Y/ = o T USSR 3-55
3.9 OPERATIONAL LIMITATIONS.ottt st s 3-55
3.9. 1 ON-ChIP RAM L.ttt s b bbbttt 3-56
3.9.2 ON-Chip EEPROMooiiiiiiiiiite sttt sttt s 3-56
S.0.3 SCI PO USAQE ...ttt sttt ettt bbbt 3-56
3.9.4 Dedicaed MCU PINS.......cccoiiiiiiesiisiinieeieee ettt bbb et 3-56
3.9.5 Termina COMMUNICAHONS.......cc.iitiririirieieiesie et e st sbe b s e se e nens 3-57

CHAPTER 4 HARDWARE REFERENCE

4.1 PCB DESCRIPTION ..ottt sne e sneen s nne s 4-1
4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS.......cccooiiiiieinecseceseenes 4-1
4.3 POWER INPUT CIRCUITRY ..ottt 4-5
A4 TERMINAL INTERFACEo 4-5
4.5 MICROCONTROLLER.......ooitiitiiteieee e 4-5
4.6 CLOCK CIRCUITRY ..ottt n s sb e n e sneenesnnenne s 4-7
A7 RESET ..ot h et R r e R n e r e n e e nne s 4-7
4.8 LOW-VOLTAGE INHIBIT ..ottt 4-7
4.9 BACKGROUND DEBUG MODE (BDM) INTERFACEcccoiiieeeereseseseeeeeees 4-7
410 PROTOTYPE AREA ...t nne s 4-8
4.11 MCU CONNECTORS.......cooiiiiiieitieie ettt n e sreen e nne s 4-8
4.12 CAN PHYSICAL INTERFACE.o 4-10

APPENDIX A S RECORD FORMAT

68EVB912BC32UM/D \Y

CONTENTS @ MOTOROLA

DESCRIPTION ...ttt s s A-1
S RECORD CONTENT ..ottt e A-1
S RECORD TYPES ... e A-2
S RECORD EXAMPLE ..o A-3

APPENDIX B COMMUNICATIONS PROGRAM EXAMPLES

INTRODUGCTIONottt ettt sttt s e s s b st s e e e s e s e sbeabenbesbesseese e e ennens B-1
PROCOMM FOR DOS — IBM PC ...ttt B-1
S (U] o TSRO PSP B-1
S-Record TransferSt0 EVB MEMOMYcouiiiiiiieieiesie st B-2
KERMIT FOR DOS — IBM PC.......ooiiiiiiiiiieeeeeie et sne s B-3
RS (U] o T PRSP UR PSP B-3
S-Record TransferSt0 EVB MEMOMYcouiiiiiiieieiesie st B-3
KERMIT — SUN WORKSTATIONcoiiiiiieieieiiesie sttt B-4
RS (U] o T PRSP UR PSP B-4
S-Record TransferSt0 EVB MEMOMYoouiiieieieieiesie et B-4
MACTERMINAL — APPLE MACINTOSH.......cooiiiiereerieee e B-5
RS (U] o T PRSP UR PSP B-5
S-Record TransferSt0 EVB MEMOMYoouiiieieieieiesie et B-5
RED RYDER — APPLE MACINTOSH ...ttt B-6
RS (U] o T PRSP UR PSP B-6
S-Record TransferSt0 EVB MEMOMYoouiiieieieieiesie et B-6

APPENDIX C D-BUG12 STARTUP CODE

APPENDIX D D-BUG12 CUSTOMIZATION DATA

INITIAL USER CPU REGISTER VALUESoveoeeveeeeseeseeseeosesseeessessesssesseesssseessesssesneeees D-2
SYSCTIK FIELD oo s sesseeseeseeseesseese s e e sessss e e esssseseesssseessseseesseeenesssesessseens D-2
LOBASE FIELD ..o eeeesesesesees e eeesssesees s eeesseseeesssseesseessess s seesseeeesseeesseesesseeneeees D-2
SCIBAUAREGVE FIELD ..veoeevveereeeeoseeeeeseeeeesessseeessseesessssessseeesssssssesssssesssssssessseesesssesessssens D-3
EEBASE AND EESIZE FIELDSoovvveeeeeeoeeeeeeeseeeeseeeseseeessessessesessssssssesssesssessseessesssesneeees D-3
EEPROM ERASE/PROGRAM DELAY FUNCTION POINTER FIELD ..o D-4
AUXILIARY COMMAND TABLE ENTRIES......vvceveeeeeseeeseeseseesssssesssessessessssseseessenees D-4

vi 68EVB912BC32UM/D

@ MOTOROLA CONTENTS

APPENDIXE EEPROM BOOTLOADER

SERIAL S RECORD BOOTLOADER.......coi ettt E-1
(=)= < TS TP USRS RRPR E-2
(10 =0 TSR SRTRSRR E-3
(16= o = =S E-3

VECTOR JUMP TABLE: INTERRUPT AND RESET ADDRESSES.coovvomiveneisnninnne. E-3

RELOADING AND CUSTOMIZING D-BUGI2.......ccceeeeeeeee e E-4
ObtainNing D-BUQL12 UPGIradES.........ccueiuerieeieeieeeeeeieesie sttt s sne s nes E-5
REOBAING D-BUGJL2 ..ottt ettt st ene e e E-5
(@0 (0004 0o 115 = U o 1 S E-5

INDEX
LIST OF ILLUSTRATIONS
Figure 1-1. EVB Layout and Component Placement..........ccevverrieneciee e see e see e 1-3
Figure 1-2. EVB SOIAer SIE VIBW ...ttt 1-4
Figure 4-2. MCU /O HEAOErSP2, P3.......ccoe ettt s nneen 4-9
Figure 4-3. MCU [/OHEAAEISPA, PO.......oueiieeeeceeee ettt 4-10
LIST OF TABLES
Table1-1. EVB SPECITICAIONSc.ceeiiiiesiisiesieeieeeeee ettt 1-7
Table2-1. EVB Startup MOOE JUMPENScoouiiiieeciee e cies sttt st snae s 2-2
Table 2-2. RS-232C Interface Cabling..........ccoeriririiieesese s 2-3
Table 2-3. CommMUNICatiON ParaMELENS.........cooiiiiieiiiree et 2-4
Table 3-1. D-Bugl2 Command-Sat SUMIMEIY.........courierieriereniesiesiesieeeeee e e 3-8
Table 3-2. M68HC11 to CPU12 Instruction Trangdation...........ccooeeverirneenenieneeseeee e 3-12
TablE 3-3. CPULZ REJISIENS....ccueiieeeiesieste sttt sttt sb bbb e 3-52
Table 3-4. Condition Code REGISIEN BItS......c.cociieiiiiiiciee ettt 3-52
Table 3-5. Factory-Configuration MemMONY Map.........coouerirerineneneseeeeee s 3-55
68EVB912BC32UM/D Vii

CONTENTS @ MOTOROLA

Table 4-1. Jumper and Header FUNCLIONS..........c.coveieieeeiceeeceeeeeee et 4-3
Table4-2. CPU MOUE SEIECHION.cccuiieeiiieieeiesieeie ettt sre et eneesne e 4-6
Table 4-3. BDM Connector PiN ASSIONMENEScouiiieiieriecie et eee e ste e ee e sse e s e s 4-8

viii 68EVB912BC32UM/D

CONTENTS

68EVB912BC32UM/D

@ MOTOROLA GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

Thismanua provides the necessary information for using the M68EVB912BC32 Evauation Board (the
EVB), an evaduation, debugging, and code-generation tool for the MC68HC912BC32 Microcontroller
Unit (MCU) devices. The manud includes:

A generd description of the EVB

Configuration and setup ingructions

Startup and operating indructions

Detailed descriptions of the operating firmware s command set
A detailed hardware-reference section

Appendices containing reference data

Additiond reference items, such as schematic diagrams and parts lists, are shipped as part of the EVB
package.

1.2 GENERAL DESCRIPTION AND FEATURES

The EVB is an economicd tool for designing and debugging code for, and evauating the operation of,
the MC68HC912BC32 MCU. By providing the essentid MCU timing and /O circuitry, the EVB
samplifies user evaluation of prototype hardware and software.

The board consists of a5.15 by 3.4 inch (13.1 by 8.64 cm) four layer printed circuit board (PCB) that
provides the platform for interface and power connections to the MC68HC912BC32 MCU chip.

Figure 1-1 shows the EVB'’s layout and locations of the mgor components, as viewed from the
component side of the board.

Har dwar e featur es of the low-cost EVB include:
Four layer PCB
Single-supply +5 Vdc power input (P5)
RS-232C interface
BDM IN and BDM OUT connectors for remote debugging of auser’starget system

68EVB912BC32UM/D 1-1

GENERAL INFORMATION @ MOTOROLA

Header footprints for accessto al MCU pins
16-MHz ostillator module for 8-MHz bus operation
Headers for jumper selection of and connection to hardware options®
- RS-232isolation (J6, J8)
- EVB mode sdection (J1, J2)
- MCU mode sdlection (J16, J17)
- Vpp/Vdd sdlection (J12)
- Vppinput (J13)
- BDM IN (J15)
- BDM OUT Vdd/reset disconnects (J18, J19)
- BDM OUT (J14)
- Low-Voltage Inhibit (LVI)
- EXTAL source control and access (J10)
- Can Physica Interface (X9)
Four 2x20 header connectors for access to the MCU’s 1/O lines (P2, P3, P4, and P6)
Prototype expansion area for customized interfacing with the MCU
Low-profile reset push-button switch (S1)
Low-voltage inhibit protection (U2)
CAN Physicd Interface (U4)

WFor full details of the jumper settings, refer to Table 4-1.

Firmwar e featur esinclude
The D-Bug12 monitor/debugger program, resident in on-chip Flash EEPROM
Full support for either dumb-termind or host-computer termind interface
Sngle-line assembl er/disassembler

File-transfer capability from a host computer to RAM or EEPROM, dlowing off-board
code generation

Ability to program EEPROM on ether the host EVB or a compatible target system

1-2 68EVB912BC32UM/D

GENERAL INFORMATION

OEooooooooooooooooooEo
>000Q00000000000000000CO0|DOCO>
C0000O0O0O000OD0O0000000C0O0
O0JCO00000000000000000O00 0000
e¥e][s¥oNeYoXoYoXeNoRoXoXoRoRoXoRoRoRo XoReRoRo X Ro Re o) (o X o)
——|0ooljcoooooo0000C00O0OOCOOOOOOOCOOO|0O
0000000000000 OOCO0O0000C000|00
0000000000000 00C0000000C000|00
N 00000000000 COOOOC0O000000000|00
) ooloooooOOOGOOCOOODOOOOOOO0OO0O0OO|0O
Q M)oOOO0O0O00000000000000000OO0|0O
m . ~ _000C000000 0N
N2 _ omuoon®ms
> o 3 oMo’ A& 0000000
m S w >0 _
Vm - m] = - ~
%Am c fof-~soooococo00 £%
© 2 §|Y]|53 R Y P Y EET Mﬂ@m
M@w mm 2 a o W e @ 4 o o =
i[boocoocooocals .
20 |] o [cooooco0000| © (o=
TEyzE2EEgE O Qg
a, N
Emm 01_ zvd [O] eva WLB zadlQ O 184 |O (e}
ona o »d|O Ofsvd 084fO O] aos
SR avd |O O zva udlo of s O fe)
o R aoa [0 Ofssn 8 s1d{0 Of rea g
212221000 Har]O Of A @EOO ssa OO
S a o oavaiO O|rava aan|Q Of zud
@ © O zave[Q Olcava 2 140 O] o o
vavd|O O]sava g 0dd|Q Q) +ad 2
[0 O O) savd | QO O|:avd « 20 Of gdd
<o pgog o o]ssa gm ZF [o) o] XN on@
e - R P
ﬂU+ o | oz g8535528¢ ooo |z
3 m, 0000000000 | ooo |3
. +°5 (oQ)s DOO0O00000O0 Tl
+QWAW_ S g0 o
I% 8 MUDO PPPPPVWMWVPM UT
3 ooodo00c0000 @ @ oo @ ooo |5
=
mv | = [oo0oo0 o F=z[T9°° [
.0000000000 _3geec]l |, mv @
= I o
QB0 © I k%l
8 - 4 000O0G = °c~ o -

o oooonm
(oNejole

O.

Figure1l-1. EVB Layout and Component Placement

1-3

68EVB912BC32UM/D

GENERAL INFORMATION @ MOTOROLA

o | O
o o o
_ °1 °9f a o o
00 0000000 . o
00 0000000 on oo o

o
CO0000000000 o
0000000 3

o)

o

o]

o)
00000000

o

A

0000000000

000000

Pes O Oleeo psa O O P82
PE3 O O)pe2 P85 O O pPs4
extaL O Oy ps7 QO O Pss

o o
00000 g ©
000000 Qo o
000000 F ri}moo;w s SOFo O
oo

0000

0000000000000 0000
00000000000 000000
00C0000000000Q0O00000
0O0CO0000O0OO00O0000000
00000000C0000000000Q00
00C0000000000000

o0
o0
o0
o

co
co
00O
co
Cco

00
00

f

Figure1l-2. EVB Solder Side View

1.3 FUNCTIONAL OVERVIEW

The EVB is factory-configured to execute DBugl2, the Flash EEPROM-resident monitor program,
without further configuration by the user. It is ready for use with an RS-232C termind for writing and
debugging user code. Follow the setup instructions in Chapter 2 to prepare for operation.

The EVB can dso be jumper-configured to:
run a program directly out of EEPROM
control aremote "pod” MCU viathe Background Debug Mode interface
reprogram EEPROM on either the host EVB or the "pod”

For the correct jumper settings, refer to 4.2 Configuration Header s and Jumper Settings.

1-4 68EVB912BC32UM/D

@ MOTOROLA GENERAL INFORMATION

NOTES

The D-Bugl2 operating ingructions in this manud presume the factory-
default memory configuration. Other configurations require different
operating-software arrangements.

EEPROM resides in two areas of memory (refer to Table 3-5), which
are referred to in this manud as "byte-erasable EEPROM™ and "Hash
EEPROM." This digtinction is necessary because of the different ways
in which they may be programmed and used.

D-Bugl2 uses the MCU’s Serid Communications Interface (SCI) for communications with the user
termind. For information on the port and its connector, refer to 2.4 EVB to Terminal Connection
and 4.4 Terminal I nterface.

If the MCU'’s single-wire Background Debug Mode (BDM) interface serves as the user interface, the
SCI port becomes available for user gpplications. This mode requires either:

another M68EVB912BC32 (or other suitable HC12 EVB) and a host computer

a background debug development tool, such as Motorola s Serial Debug Interface (SDI)

For more information, refer to the Motorola Serial Debug Interface User’s Manual.

Two methods may be used to generate EVB user code:

1. For small programs or subroutines, D-Bugl2's single-line assembler/disassembler may be
used to place object code directly into the EVB’s RAM or EEPROM.

2. For larger programs, P&E Microcomputer Systems IASM12 may be used on a host
computer to generate SRecord object files, which can then be loaded into the EVB’s
memory usng D-Bug12's LOAD command.

The EVB features a prototype area, which alows custom interfacing with the MCU’s 1/O and bus lines.
These connections are broken out via headers P2, P3, P4, and P6, which are immediately adjacent to
the MCU on the board. Wire-wrap pins may be placed in these headers to connect to the prototyping
area, asshownin Figure 1-1

An on-board push-button switch, S1, provides for resetting the EVB hardware and restarting D-Bug12.

The EVB can begin operation in any of four jumper-seectable (J1, J2) modes at reset:
1. InEVB mode, program execution beginsin one of two ways.

a If D-Bugl? is resdent in Hash EEPROM (i.e, if Mode 4 below has not been
performed), D-Bugl2 immediately issues its command prompt on the termina display and
waits for a user entry.

b. If D-Bugl2 has been replaced in Flash EEPROM with user code (i.e., Mode 4 below
has been performed), execution begins with the user program.

68EVB912BC32UM/D 1-5

GENERAL INFORMATION @ MOTOROLA

2. In JUMP-EE mode, execution begins directly a location $0D00 with the user code in
byte-erasable EEPROM.

3. In POD mode, the board makes use of the BDM OUT header (J14) and uses the
D-Bugl2 commands to non-intrusively interrogate an externd target MCU. Specid
prompts are displayed to let the user know if this mode is selected. If no externa MCU is
detected, the software informs the user.

The target’s EEPROM may be programmed while the host M68EVB912BC32 board isin
EVB mode, using the D-Bug12 commands BULK, LOAD, FBULK and FLOAD.

4. In BOOTLOAD mode, the host EVB’s byte-erasable or Flash EEPROM may be
reprogrammed with user code. This mode may adso be used to rdload or customize
D-Bugl2.

D-Bug12 alows programming of the MC68HC912BC32's on-chip EEPROM through commands that
directly ater memory. For detalls of dl D-Bugl2 commands, refer to 3.6 D-Bugl12 Command Set.

When operating in EVB mode, the MCU must manage the EVB hardware and execute DBugl2 in
addition to serving as the user-application processor, there are a few redtrictions on its use. For more
information, refer to 3.9 Operational Limitations.

1.4 EXTERNAL EQUPMENT REQUIREMENTS

In addition to the EVB, the following user-supplied externd equipment is required:

Power supply — see Table 1-1 for voltage and current requirements.

User terminad — options:

RS-232C dumb termina — adlows single-line on-board code assembly and
disassembly.

Host computer with RS-232C serid port — alows off-board code assembly that
can be loaded into the EVB’s memory. Requires a user-supplied communications
program cgpable of emulating a dumb termind. Examples of acceptable
communications programs ae given in Appendix B % Communications
Program Examples.

Host computer using the MCU’s BDM interface — frees the target MCU’s SCI
port for user gpplications. This requires another M68EVB912BC32 for use as the
target or a background debug devel opment tool, such asthe Motorola Serid Debug
Interface (SDI).

Power-supply and terminal interconnection cables as required

For full details of equipment setup, cabling, and specid requirements, refer to Chapter 2.

1-6

68EVB912BC32UM/D

@ MOTOROLA GENERAL INFORMATION

1.5 EVB SPECIFICATIONS

Table 1-1 ligsthe EVB specifications.

Table 1-1. EVB Specifications

Characteristic Specifications

MCU MC68HC912BC32
MCU I/O ports HCMOS compatible
Background Debug Mode interface | two 2x3 headers
(IN and OUT)
Communications port RS-232C DCE port
Power requirements, +2.7 Vdc to +5.0 Vdc @ 100 mA (max.)
16 MHz clock source For low-voltage operation, refer to section 4.8.
Prototype area:

Area approx. 1.5 x 3in. (3.8 x 7.6 cm)

Holes approx. 11 wide x 28 high, on 0.1 in. (2.54 mm) centers
Board dimensions 5.15x 3.4in. (13.1 x 8.64 cm)

68EVB912BC32UM/D 1-7

GENERAL INFORMATION

1.6 CUSTOMER SUPPORT

AUSTRALIA,
Melbourne — (61-3)887-0711
Sydney — (61-2)906-3855
BRAZIL
Sao Paulo — 55(11)815-4200
CANADA
B.C., Vancouver — (604)606-8502
ONTARIO, Toronto — (416)497-8181
ONTARIO, Ottawa— (613)226-3491
QUEBEC, Montrea — (514)333-3300
CHINA
Beijing — 86-10-6843722

FINLAND

Helsinki — 358-9-6824-400
FRANCE

Paris — 33134 635900
GERMANY

Langenhagen/Hannover — 49(511) 786880
Munich —49 89 92103-0
Nuremberg — 49 911 96-3190
Sindelfingen — 49 7031 79 710
Wieshaden — 49 611 973050
HONG KONG
Kwa Fong — 852-6106888
Ta Po — 852-6668333
INDIA
Bangalore — (91-80)5598615
ISRAEL
Herzlia— 972-9-590222
ITALY
Milan — 39(2)82201

JAPAN

Fukuoka — 81-92-725-7583

Gotanda — 81-3-5487-8311

Nagoya — 81-52-232-3500

Osaka — 81-6-305-1802

Sendai — 81-22-268-4333

Takamatsu — 81-878-37-9972

Tokyo — 81-3-3440-3311
KOREA

Pusan — 82(51)4635-035

Seoul — 82(2)554-5118
MALAYSIA

Penang — 60(4)374514
MEXICO

Mexico City — 52(5)282-0230

Guadagara— 52(36)21-8977
PUERTO RICO

San Juan — (809)282-2300
SINGAPORE — (65)4818188
SPAIN

Madrid — 34(1)457-8204
SWEDEN

Solna— 46(8)734-8800
SWITZERLAND

Geneva—41(22)799 11 11

Zurich —41(1)730-4074
TAIWAN

Taipel —886(2)717-7089
THAILAND

Bangkok — 66(2)254-4910
UNITED KINGDOM

Aylesbury — 44 1 (296)395252
UNITED STATES

Phoenix, AZ — 1-800-441-2447

For alist of the Motorola sales offices and distributors: http://www.mcu.mot.sps.com

1-8

68EVB912BC32UM/D

@ MOTOROLA CONFIGURATION AND SETUP

CHAPTER 2
CONFIGURATION AND SETUP

2.1 UNPACKING AND PREPARATION

Verify that the following items are present in the EVB package:
The M68EVB912BC32 board assembly
Background Debug Mode(BDM) interface cable, 6-pin to 6-pin
EVB schematic diagram and parts list

Save dl packing materids for storing and shipping the EVB.

Remove the EVB from its anti-static container.

2.2 EVB CONFIGURATION

Because the EVB has been factory-configured to operate with D-Bugl2, it is not necessary to change
any of the jJumper settings to begin operating immediatdy.

Asshownin Table 2-1, only two jumpers (J1 and J2) should be changed during the course of factory-
default EVB operation with D-Bugl2.

68EVB912BC32UM/D 2-1

CONFIGURATION AND SETUP @ MOTOROLA

Table2-1. EVB Startup Mode Jumpers

Jumper Startup Mode
Positions

J1 J2

B B EVB execution mode (default). D-Bugl2 is executed from Flash EEPROM upon reset. The
D-Bug12 prompt appears immediately on the terminal display.

B A JUMP-EEPROM mode. User code is executed from byte-erasable EEPROM upon reset.
For more information, refer to 3.1 Operating Modes.

B Remote Debugging through BDM OUT header (J14)

A BOOTLOAD mode

Other jumper settings affect the hardware setup and/or MCU operational modes. For an overview of
al jumper-selectable functions, refer to 1.2 General Description and Features. For detalls of the
Settings, see Table 4-1.

2.3 EVB TO POWER SUPPLY CONNECTION

The EVB requires a user-provided external power supply. See Table 1-1 for the voltage and current
Specifications. For full details of the EVB’s power-input circuitry, refer to 4.3 Power Input Circuitry.

A power supply with current-limiting capability is desirable. If this feature is avalable on the power
upply, set it at 200 mA.

Connect the externa power supply to connector PS on the EVB, using 20 AWG or smdler insulated
wire. Strip each wire sinsulaion 1/4 in. from the end, lift the PS contact lever to release tenson on the
contact, insert the bare end of the wire into PS5, and close the lever to secure the wire. Observe the

polarity carefully.
CAUTION

Do not use wire larger than 20 AWG in connector P5. Larger wire
could damage the connector.

2.4 EVB TO TERMINAL CONNECTION
For factory-default operation, connect the termina to P1 on the EVB, as shown in Table 2-2. This

setup uses the MCU's SCI port and its associated RS-232C interface for communications with the
termind device.

2-2 68EVB912BC32UM/D

@ MOTOROLA CONFIGURATION AND SETUP

Standard, commercidly available cables may be used in most cases. Note that the EVB requires only
three of the RS-232C sgnas. Table 2-2 lids these Sgnds and their pin assgnments. Other 9gnas
have been routed through the RS-232C interface chip for proper levels. Some termind interface
programs require proper levels on dl pinsto function correctly.

The EVB’'s RS232C connector, P1 , is wired as Data Circuit-terminating Equipment (DCE) and
employs a 9-pin subminiature D (DB-9) receptacle.

Most termina devices — whether dumb terminals or the seria ports on host computers — are wired as
Data Termind Equipment (DTE) and employ 9 or 25pin subministure D (DB-9 or
DB-25) plugs. In these cases, norma sraight-through cabling is used between the EVB and the
termind. Adapters are readily available for connecting 9-pin cables to 25-pin termina connectors.

If the terminal device iswired as DCE, the RXD and TXD lines must be cross-connected, as shown in
Table 2-2. Commercia "null modem" adapter cables are available for this purpose.

Table 2-2. RS-232C Interface Cabling

EVB P1 DTE Signal Terminal
DCE DTE® DCE®
Receptacle Plug Receptacle
DB-9 DB-25 DB-9 DB-25
2 Receive Data (RXD) 2 2 3 3
3 Transmit Data (TXD) 3 3 2 2
5 Ground (GND) 5 7 5 7

' Normal (DCE-to-DTE) cable connections
@ Null modem (DCE-to-DCE) cable connections

Optionaly, the MCU’s Background Debug Mode (BDM IN %, J15) interface can serve as the user
interface. This setup makes the SCI port available for user gpplications. Additiond hardware and
software are required. For more information, refer to the documentation for the background debug
development tool being used. This can be another M68EVB912BC32 or a tool such as Motorold's
Serid Debug Interface (SDI).

68EVB912BC32UM/D 2-3

CONFIGURATION AND SETUP @ MOTOROLA

2.5 TERMINAL COMMUNICATIONS SETUP

2.5.1 Communication Parameters

The EVB’s serid communications port uses the communication parameters liged in Table 2-3. Of
these, only the baud rate can be changed. For ingtructions on changing it, refer to 2.5.4 Changing the
Baud Rate.

Table 2-3. Communication Parameters

Baud Rate 9600

Data Bits 8

Stop Bits 1

Parity none

2.5.2 Dumb-Terminal Setup

Configuring a dumb termina for use with the EVB condgts of stting its parameters as shown in Table
2-3. Many terminds are configurable with externdly accessble switches, but the procedure differs
between brands and modds. Consult the manufacturer’ singtructions for the termina being used.

2.5.3 Host-Computer Setup

One advantage of using a host computer asthe EVB’stermind is the ability to generate code off-board,
for subsequent loading into the EVB’s memory. It isthus dedrable for the host to be capable of running
programs such as P& E Microcomputer Systems IASM12. For more information, refer to 3.7 Off-
Board Code Generation.

To serve as the EVB's termind, the host computer must have an RS-232C serid port and an ingtalled
communications program capable of operating with the parameterslisted in Table 2-3.

Setting up the parametersis normaly done within the communications program, after it has been arted
on the host. Usudly, the setup can be saved in a configuration file so that it does not have to be
repested. Procedures vary between programs; consult the user’ s guide for the specific program.

Appendix B % Communications Program Examples provides examples of usng some of the
commonly available communications programs.

2.5.4 Changing the Baud Rate

The EVB’ s default baud rate for the RS-232C port is 9600. This can be changed in two ways.

2-4 68EVB912BC32UM/D

@ MOTOROLA CONFIGURATION AND SETUP

For temporary changes, use the D-Bug12 BAUD command. This change remains in effect
only until the next reset or power-up, a which time the baud rate returns to 9600.

For permanent changes, the D-Bugl2 baud-rate initidization vaue sored in Flash
EEPROM must be modified. For indructions, refer to Appendix D % D-Bugl2
Customization Data and Appendix E %2 EEPROM Bootloader.

68EVB912BC32UM/D 2-5

CONFIGURATION AND SETUP @ MOTOROLA

2-6 68EVB912BC32UM/D

@ MOTOROLA OPERATION

CHAPTER 3
OPERATION

3.1 OPERATING MODES

The EVB can operate in one of four jumper-sdlectable modes:

EVB mode % ether D-Bugl2 or the user code in Flash EEPROM executes.

JUM P-EEPROM mode % user code in byte-erasable EEPROM executes.

POD mode % D-Bugl2 executes. EVB serves asthe BDM probe for atarget system.

BOOTLOAD mode % the host EVB’s EEPROM may be reprogrammed.
The operating mode is determined by jumper headers J1 and J2, as shown in Table 4-1. The modes
are decribed in the following three sections.

NOTE

When operating in EVB mode, the M68EV B912BC32 cannot fully
emulate atarget sysem. The limitations are described in 3.9
Operational Limitations.

Target system emulation may, however, be performed by using the
EVB with D-Bug12 as an intdligent, non-intrusve BDM interface. This
operation isdescribed in 3.1.3 POD (Probe) Mode.

3.1.1 EVB Mode

In the default EVB mode (J1: pos. B and J2: pos. B), D-Bugl2 begins execution immediady. The
D-Bugl2 prompt appears on the termind and commands may be entered as described in 3.5 Using
D-Bugl2 Commands.

If D-Bugl2 has been replaced with user code in FHash EEPROM, execution begins with the user’'s
program.
3.1.2 JUMP-EEPROM Mode

In this mode (J1: pos. B and J2: pos. A), the EVB begins operation out of reset by executing the user
program in byte-erasable EEPROM garting at address $0D00, as shown in Table 3-5.

68EVB912BC32UM/D 3-1

OPERATION @ MOTOROLA

This mode is effected using the MCU’s PADO line. User code may be programmed into byte-erasable
EEPROM using the D-Bug12 commands liged in 3.5.3 Command-Set Summary.
Control can be returned to D-Bug12 in the following ways

1. Move the jumpers on headers J1 and J2 to position B and reset the EVB.

2. Terminate the user program with code that returns to D-Bugl2 after execution has finished.

To return to D-Bugl2 automatically after a user program has finished, include the following lines as the
last ingructions to be executed in the program:

STACKTOP: equ $0c00 ; stack at top of on-chip RAM
Al t Reset Vect: equ $F7FE

| ds #STACKTOP
j mp [Alt ResetVect,PCR] ; junp to start of D-Bugl2

3.1.3 POD (Probe) Mode

In this mode (J1: pos. A and J2: pos. B), the EVB and D-Bugl2 serve as a POD ("probe") interface
between atarget system and the user. Communications between the EVB and the target are by means
of the Background Debug Mode (BDM) interface, using the EVB header J14 (BDM OUT).

This arrangement dlows the target system to perform true emulation of an gpplication, as the BDM
interface is non-intrusive upon the target’ s foreground operation. The target’s on-chip resources are all
available for the application. The target may be a second M68EVB912BC32 board or any other
M68HC12 system. D-Bugl2 commands are entered as usua on the user termind, which is served by
the POD EVB.

3.1.3.1 Target Types Supported

All members of the M6BHC12 family may be used in the target system.

3.1.3.2 Target MCU Characteristics

The following DBug12 commands must be used to inform D-Bugl2 of the target MCU’s essential
operating characterigtics in order to alow transparent modification of the target’s EEPROM. For
detalls, refer to the command descriptionsin 3.6 D-Bugl2 Command Set.

DEVICE % specifiesthe target’s microprocessor type
EEBASE % specifies the base address of the target’ s Flash EEPROM
REGBASE % specifies the base address of the target MCU’s 1/O registers

3-2 68EVB912BC32UM/D

@ MOTOROLA OPERATION

3.1.3.3 Programming the Target’s EEPROM

The target MCU’s on-chip byte-erassble or Flash EEPROM may be programmed from user-
assembled SRecords on the host (termina) computer by using the D-Bugl2 commands BULK,
LOAD, FBULK, and FLOAD. For details, refer to 3.6 D-Bugl2 Command Set.

3.1.3.4 Controlling Target Execution
All D-Bug12 commands that control the execution of user code may aso be used in both EVB mode
and POD mode. Two additional commands are availablein POD mode;

RESET % resets the target MCU and placesit in active background mode

STOP % halts program execution on the target

For detalls, refer to the command descriptionsin 3.6 D-Bugl2 Command Set.

3.1.4 BOOTLOAD Mode

In this mode (J1: pos. A and J2: pos. A), a user program may be loaded into the host EVB’s byte-
erasable or Flash EEPROM. D-Bugl2 may be replaced as the startup "boot" program. This mode
may also be used to reload or customize D-Bugl2. The procedures are described in Appendix E %
EEPROM Bootloader.

3.2 STARTUP

3.2.1 Startup Procedure
The following startup procedure includes a checklist of configuration and sstup items. To begin
operating the M68EVB912BC32, follow these steps:

1. Configurethe EVB if required — section 2.2.

2. Determine whether execution should begin in EVB mode (page 3-1), JUMP-EEPROM
mode (page 3-1), POD mode (page 3-2), or BOOTLOAD mode (page3-3). Set the
jumpers on headers J1 and J2 accordingly — sections 2.2 and 3.1.

3. Connect the EVB to the externa power supply — section 2.3.
4. Connect the EVB to the terminal — section 2.4.
5. Configure the termina communications interface — section 2.5.

68EVB912BC32UM/D 3-3

OPERATION @ MOTOROLA

6. Apply power to the EVB and to thetermind. If the termind isahost compuiter,
a. Veify that it has booted correctly.

b. Stat the communications program for termind emulation — section 2.5.3 and
Appendix B % Communications Program Examples.

7. Reset the EVB by pressing and releasing the on-board reset switch (S1).

3.2.2 Operating Procedures

After garting the EVB in accordance with section 3.2.1, follow the operating procedure for the EVB
mode that was selected: EVB mode, JUMP-EEPROM mode, POD mode, or BOOTLOAD mode.
These procedures are described in the following sections.

3.22.1 EVB Mode

In EVB mode, the MC68HC912BC32 begins executing code &t the address contained in the aternate
reset vector at $F7FE (for information on the dternate reset and interrupt vector table, see Vector
Jump Table: Interrupt and Reset Addresses on page E-3). The code pointed to by the dternate
reset vector may either be D-Bug12 (factory default) or auser’s program that has replaced D-Bugl2 in
Flash EEPROM.

D-Bugl12 % upon reset, the D-Bugl2 sign-on banner and prompt should appear on the termind’s
disolay asfollows

D-Bugl2 v 2.0.0

Copyright 1996 - 1997 Mdtorola Sem conduct or
For Conmands type "Hel p"

>

If the prompt does not gppear, check al connections and verify that startup steps 1 through 7 in
section 3.2.1 have been performed correctly.

When the prompt appears, D-Bugl2 is ready to accept commands from the termind as
described in section 3.5.

User boot program % upon reset, the user program executes immediately. D-Bugl2 commands are
not available. Termind communications take place either via the SCI under control of the user
program or viathe BDM interface and a serid debug interface tool such as Motorola's SDI.

3.2.2.2 JUMP-EEPROM Mode

In JUMP-EEPROM mode, the user code in byte-erasable EEPROM darting a address $0D00 is
executed immediately. Termind communications are controlled by the user code via the SCI or by an
appropriate serid debug tool via the BDM interface. For more information, refer to 3.1.2 JUMP-

34 68EVB912BC32UM/D

@ MOTOROLA OPERATION

EEPROM Mode. Control can be returned to the DBugl2 termind prompt by doing one of the
fallowing:

1. terminating the user code with gppropriate instructions — see section 3.1.2
2. pressing the reset button (S1)

3.2.2.3 POD Mode

In POD mode, the host EVB serves as a non-intrusive controller for the target system via the BDM
interface. The host EVB begins executing code at the address contained in the dternate reset vector at
$F7FE (for information on the dternate reset and interrupt vector table, see Vector Jump Table:
Interrupt and Reset Addresses on page E-3). The code pointed to by the aternate reset vector may
either be D-Bugl2 (factory default) or auser’s program that has replaced D-Bugl2 in Flash EEPROM.

D-Bugl12 % upon power-up or reset, D-Bugl2 attempts to establish communications with a target
system connected to BDM OUT (J14). Communications are firgt attempted without resetting
the target system. If communications cannot be established, the following message is displayed:

Can't Communi cate Wth The Target Processor
To reset target, hit any key...

Pressing any key on the terminal’ s keyboard causes D-Bug12 to assert the target’ s reset pin for
approximatdy 2 mS and try again to establish communications. If communications fail, the
above error message is redisplayed. Once communications have been established with the
target system, the D-Bug12 sign-on banner and prompt should appear on the termind’ s display
asfollows

D-Bugl2 v 2.0.0

Copyright 1996 - 1997 Mdtorola Sem conductor
For Conmmands type "Hel p"

S>

If communications cannot be established with the target system after repeeated attempts, check
for the following possible problems:

The host EVB's BDM OUT (J14) must be properly connected to the target system’s BDM
connector. If the target system is another EVB, make sure that the host EVB's BDM OUT
is connected to target EVB's BDM IN (J15 - for M6BEVB912BC32).

If the target system is not another EVB, verify that its BDM connector is wired to the
proper MCU signds on each pin.

If the target MCU does not have any firmware to execute, it could "run away," possbly
executing a STOP opcode and preventing BDM communications with the host EVB.

Thus, it is strongly recommended that, if the target system does not have firmware to
execute at reset, the target MCU be initidly configured to begin operation in Specid Single
Chip mode. Resdting the target MCU in Specid Single Chip mode places it in active

68EVB912BC32UM/D 3-5

OPERATION @ MOTOROLA

background mode. See the target MCU'’s technicad summary for details on setting the
MCU operating mode.
Special D-Bugl2 command-line prompts indicate the status of the target system:
S> target is in active background node
R> target is running a user program
In addition to the norma D-Bug12 commands that control execution of user code, the RESET

and STOP commands are available in POD mode. These commands are described in 3.6
D-Bugl2 Command Set.

D-Bugl12 must be informed of the target MCU’ s basic operating parameters. Refer to section
3.1.3 for more information about setting up and using POD mode.

User boot program % upon reset, the user program executes immediately. D-Bugl2 commands are
not available. Communications with the user termina and with the target system are controlled
by the user program.

3.2.2.4 BOOTLOAD Mode

In BOOTLOAD mode, a user program may be loaded into the host EVB's byte-erasable or Flash
EEPROM. If the user code replaces D-Bugl2 in Flash EEPROM, it serves as the "boot" program
when the EVB is restarted in EVB or POD mode. This procedure is described in Appendix E ¥
EEPROM Bootloader.

3.3 RESET

EVB operation can be restarted a any time by activating the hardware reset function. Do thisin one of
two ways.

1. Pressand release the on-board reset switch, S1 (aways applicable).

2. Activate the external reset input if one has been provided for operation below 3.0 VVdc.

Note that the EVB’ s resat circuitry is associated with the low-voltage protection. For more information,
refer to 4.7 Reset and 4.8 Low-Voltage I nhibit.

3.4 ABORTING A USER PROGRAM

When operating in EVB mode, the only way to recover from an erroneous or runaway user program is
to press the reset switch (S1). If this becomes necessary, the jJumpers on headers J1 and J2 should be
set to execute D-Bugl?2 at reset ingtead of the flawed user program.

3-6 68EVB912BC32UM/D

@ MOTOROLA OPERATION

When operating in POD mode, the D-Bugl2 RESET or STOP command can be used to regain control
of the target system.

3.5 USING D-BUG12 COMMANDS

D-Bugl2, the EVB's firmwareresdent monitor program, provides a sdf-contained operating
environment that allows writing, evauation, and debugging of user programs.

3.5.1 Command-Line Prompt

D-Bug12 displays one of three command-line prompts, depending upon its operating mode and/or the
date of the target sysem. When D-Bugl2 is operating in the EVB mode, it displays the sngle
character ">" a the beginning of a line when it is waiting for the user to enter a command. When a
command is issued that causes user code to run, D-Bugl2 places the termind cursor on a blank line,
where it remains until control returns to D-Bug12.

When operating in the POD mode, D-Bug12 displays one of two prompts, depending upon the State of
the attached target syssem. When the target system is in active background mode (not running a user
program), the two-character prompt " S>" is displayed, indicating that the target is stopped and not
running a user program. When the target system is running a user program, the two-character prompt
"R>" is displayed, indicating that the target is running a user program.

Because the M68HC12 Background Debug Mode interface alows the reading and writing of target
system memory even when the target is running a user’s program, the probe microcontroller is dways
available for the entry of commands. D-Bugl2 commands that examine or modify target system
memory may be issued when ether the "S>" or "R>" prompt is displayed.

3.5.2 Entering Commands

Commands are typed on the termina’s DBugl2 prompt line and executed when the carriage-return
(ENTER) key is pressed. D-Bugl2 then digplays either the appropriate response to the command or
an error indication.

The D-Bugl2 command-line prompt is the greater-than sign (>). Type the command and any other
required or optiond fieldsimmediately after the prompt, as follows:

command-line syntax:

<command> [<paraneter>] ...[<paramneter>] <ENTER>
where:
<command> is the command mnemonic.
<parameter> IS an expression or address.

68EVB912BC32UM/D 3-7

OPERATION @ MOTOROLA

<ENTER> isthe termina keyboard' s carriage-return or enter key.
NOTES
1. The command-line syntax isillustrated usng the following specia characters for darification.

Do not type these characters on the command line:

<> required syntactica element
[] optiond field
ol repeated optiond fields

Fields are separated by any number of space characters.

3. All numeric fidds, unless noted otherwise, are interpreted as hexadecimal.

4. Command-line entries are case-insendtive and may be typed usng any combination of

upper- and lower-case | etters.

A maximum of 80 characters, including the terminating carriage return, may be entered on
the command line. After the 80th character, D-Bugl2 automaticadly terminates the
command-line entry and processes the characters entered to that point.

Before the <ENTER> or <RETURN> key is pressed, the command line may be edited
using the backspace key. Receiving the backspace character causes D-Bugl?2 to delete the
previoudy-received character from itsinput buffer and erase the character from the display.

3.5.3 Command-Set Summary

Table 3-1 summarizes the D-Bugl2 commands. For detailed descriptions of each command, refer to
3.6 D-Bug12 Command Set.

Table 3-1. D-Bugl2 Command-Set Summary

Command Description

ASM <address> Single-line assembler/disassembler

BAUD <BAUDRate> Set the SCI communications baud rate

BF <StartAddress><EndAddress> [<Data>] Block fill user memory with data

BR [<Address><Address>...] Set/display user breakpoints

BULK Bulk erase byte-erasable EEPROM

3-8 68EVB912BC32UM/D

@momnam

OPERATION

Table 3-1. D-Bugl2 Command-Set Summary (continued)

Command

Description

CALL [<Address>]

Execute a user subroutine; return to D-Bug12 when
finished

DEVICE [see description]

Select/define a new target MCU device

EEBASE <Address>

Inform D-Bug12 of the target's EEPROM base address

FBULK

Erase the target processor’'s on-chip Flash EEPROM

FLOAD <AddressOffset>

Program the target processor’s on-chip Flash EEPROM
from S-Records

G [<Address>]

Go — begin execution of user program

GT <Address>

Go Till — set a temporary breakpoint and begin execution
of user program

HELP

Display D-Bug12 command set and command syntax

LOAD [<AddressOffset>]

Load user program in S-Record format*

MD <StartAddress> [<EndAddress>]

Memory Display — display memory contents in hex
bytes/ASCII format

MDW <StartAddress> [<EndAddress>]

Memory Display Word — display memory contents in hex
words/ASCII format

MM <Address> [<data>]

Memory Modify — interactively examine/change memory
contents

MMW <address> [<data>]

Memory Modify Word — interactively examine/change
memory contents

MOVE <StartAddress> <EndAddress>
<DestAddress>

Move a block of memory

NOBR [<Address> <Address>...]

Remove individual user breakpoints

RD Register Display — display the CPU register contents

REGBASE Inform D-Bug12 of the target I/O register's base address

RESET Reset the target CPU

RM Register Modify — interactively examine/change CPU
register contents

STOP Stop execution of user code on the target processor and

place it in background mode

68EVB912BC32UM/D

3-9

OPERATION @ MOTOROLA

Table 3-1. D-Bugl2 Command-Set Summary (continued)

Command Description

T [<Count>] Trace — execute an instruction, disassemble it, and
display the CPU registers

UPLOAD <StartAddress> <EndAddress> Display memory contents in S-Record format*
VERF [<AddressOffset>] Verify memory contents against S-Record Data
<RegisterName> <RegisterValue> Set CPU <RegisterName> to <RegisterValue>

* Refer to Appendix A for S-Record information.

3.6 D-BUG12 COMMAND SET

In the following command descriptions, the examples represent what is seen on the termina display.
For darity, the user’ sentry isunderlined. This underlining does not actually appear onscreen.

A typica examplelookslikethis

>paud 9600 user’'sentry
Change Term nal BR, Press Return D-Bugl2’ sresponse
> D-Bugl12 prompt for next entry

3-10 68EVB912BC32UM/D

@ MOTOROLA OPERATION

ASM Assembler/Disassembler ASM

syntax:
ASM <Addr ess>

where:
<Address> is a 16-hit hexadecima number.

The assembler/disassembler is an interactive memory editor that alows memory contents to be viewed
and dtered usng assembly language mnemonics. Each entered source line is trandated into object code
and placed into memory at the time of entry. When displaying memory contents, each ingruction is
disassembled into its source mnemonic form and displayed adong with the hexadecima object code and
any ingruction operands.

Assembler mnemonics and operands may be entered in any mix of upper and lower case letters. Any
number of spaces may appear between the assembler prompt and the ingtruction mnemonic or between
the ingruction mnemonic and the operand. Numeric vaues gppearing in the operand fidd are
interpreted as signed decima numbers. Placing a$ in front of any number will cause the number to be
interpreted as a hexadecima number.

When an ingruction is disassembled and displayed, the DBugl2 prompt is displayed following the
dissssembled ingruction. If a carriage return is the first non-space character entered following the
prompt, the next ingtruction in memory is disassembled and displayed on the next line.

If a CPU12 ingruction is entered following the prompt, the entered ingtruction is assembled and placed
into memory. The line containing the new entry is erased and the new ingruction is disassembled and
disolayed on the same line. The next indruction location is then disassembled and displayed on the
screen.

The ingruction mnemonics and operand formats accepted by the assembler follows the syntax as
described in the CPU12 Reference Manual.

There are anumber of M68HC11 instruction mnemonics that appear in the CPU12 Reference Manual
that do not have directly equivadent CPU12 indructions. These mnemonics, listed in Table 3-2, are
trandated into functiondly equivaent CPU12 ingructions. To ad the current M68HC11 users who
may desre to continue usng the M68HC11 mnemonics, the disassembler portion of the
assembler/disassembler recognizes the functionally equivaent CPU12 ingructions and disassembles
those ingructions into the equivaent M68HC11 mnemonics.

When entering branch ingructions, the number placed in the operand fidd should be the absolute
degtination address of the indruction. The assembler caculates the two's-complement offset of the
branch and places the offset in memory with the ingtruction

68EVB912BC32UM/D 3-11

OPERATION @ MOTOROLA

The assembly/disassembly process may be terminated by entering a period (.) as the first non-space
character following the assembler prompt.

restrictions;

None.

Table3-2. M68HC11 to CPU12 Instruction Trandation

M68HC11 Mnemonic CPU12 Instruction M68HC11 Mnemonic CPU12 Instruction
CLC ANCC # $FE INS LEAS 1, S
CLI ANCC # $EF TAP TFR A, CC
CLv ANCC # $FD TPA TFR CC, A
SEC ORCC # $01 TSX TFR S, X
SEI ORCC # $10 TSY TFR S, Y
SEV ORCC # $02 XGDX EXG D, X
ABX LEAX B, X XGDY EXG D, Y
ABY LEAY B, Y SEX Rg, Ry TFR Rg, Ris
DES LEAS -1, S
example:

>ASM 800

0800 CC1000 LDD #$1000

0803 1803123401FE MOVW #$1234, $01FE

0809 OEF9800001F1 BRSET - 32768, PC, $01, $0700

080F 18FF TRAP $FF

0811 183FE3 ETBL <lllegal Addr Mdde> >.

>

assembly operand format:

This section describes the operand format used by the assembler when assembling CPU12 ingtructions.
The operand format accepted by the assembler is described separately in the CPU12 Reference
Manual. Rather than describe the numeric format accepted for each ingtruction, some genera rules are
used. Exceptions and complicated operand formats are described separately.

In generd, anywhere the assembler expects a numeric vaue in the operand field, ether a decima or
hexadecima value may be entered. Decimal numbers are entered as Sgned congtants having a range of
-32768 to 65535. A leading minus sign (-) indicates negative numbers, the absence of a leading minus

3-12 68EVB912BC32UM/D

@ MOTOROLA OPERATION

sgn indicates a postive number. A leading plus sign (+) is not dlowed. Hexadecima numbers must be
entered with a leading dollar sign ($) followed by one to four hexadecimad digits. The default number
base is decimdl.

For dl branching ingtructions (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE, TBEQ,
and TBNE), the number entered as the branch address portion of the operand field is the absolute
address of the branch destination. The assembler calculates the two’ s-complement offset to be placed
in the assembled object code.

disassembly operand format:

The operand format used by the disassembler is described separately in the CPU12 Reference
Manual. Rather than describing the numeric format used for each ingtruction, some generd rules are
applied. Exceptions and complicated operand formats are described separately.

All numeric vaues disassembled as hexadecimad numbers are preceded by a dallar sign ($) to avoid
being confused with vaues disassembled as sgned decima numbers.

For al branch (Bcc, LBcc, BRSET, BRCLR, DBEQ, DBNE, IBEQ, IBNE, TBEQ, TBNE)
ingtructions the numeric value of the address portion of the operand field is displayed as the hexadecimal
absolute address of the branch destination.

All offsets used with indexed addressing modes are disassembled as signed decimal numbers.
All addresses, whether direct or extended, are disassembled as four digit hexadecima numbers.

All 8-bit mask values (BRSET/BRCLR/ANDCC/ORCC) are disassembled as two-digit hexadecimal
numbers.

All 8-bit immediate vaues are disassembled as hexadecima numbers.

All 16-hit immediate values are disassembled as hexadecimad numbers.

68EVB912BC32UM/D 3-13

OPERATION @ MOTOROLA

BAUD Set Baud Rate BAUD

syntax:
BAUD <BAUDRat e>

where:
<BAUDRate> isan undgned 16-bit decima number.

The BAUD command is used to change the communications rate of the SCI used by D-Bug12 for the
termind interface.

restrictions;

Because the <BAUDRate> parameter supplied on the command line is a 16-bit unsigned integer,
BAUD rates greater than 65535 baud cannot be set using this command. The SCI BAUD rate divider
vaue for the requested BAUD rate is cdculated usng the Eclock value supplied in the DBugl2
customization data area. Because the SCI BAUD rate divider is a 13-hit counter, certain BAUD rates
may not be supported at particular E-clock frequencies. If the value calculated for the SCI's BAUD
rate divider is equa to zero or greater than 8191, command execution is terminated and the
communications BAUD rateis not changed.

example:
>BAUD 50

| nval i d BAUD Rate
>BAUD 38400

Change Term nal BR, Press Return
>

3-14 68EVB912BC32UM/D

@ MOTOROLA OPERATION

BF Block Fill BF

syntax:
BF <StartAddress> <EndAddress> [<Data>]

where:
<StartAddress> Isa 16-bit hexadecima number.
<EndAddress> isa 16-bit hexadecima number.
<Data> isan 8-bit hexadecima number.

The Block Fill command is used to place a gngle 8-bit vaue into a range of memory locations.
<StartAddress> is the first memory location written with <data> and <EndAddress> is the last memory
location written with <data>. If the <data> parameter is omitted, the memory range is filled with the
value $00.

restrictions:
None.

example:

>BF 6400 6fff O
>BF 6f00 6fff 55
>

68EVB912BC32UM/D 3-15

OPERATION @ MOTOROLA

BR Breakpoint Set BR

syntax:
BR [<Address> <Address> ...]

where:
<Address> are optional 16-bit hexadecimal numbers.

The BR command is used to set a software breskpoint at a specified address or to display any
previoudy set bregkpoints. The function of a breskpoint is to hat user program execution when the
program reaches the breskpoint address. When a breakpoint address is encountered, D-Bugl2
disassembles the ingtruction at the breakpoint address, prints the CPU12's register contents, and waits
for a D-Bug12 command to be entered by the user.

Breakpoints are set by typing the breakpoint command followed by one or more breskpoint addresses.
Entering the breakpoint command without any breskpoint addresses will display dl the currently set
breakpoints.

A maximum of 10 user breskpoints may be set a onetime.
restrictions:

D-Bug12 implements the breakpoint function by replacing the opcode at the breskpoint address in the
users program with an SWI ingruction when operating in EVB mode or with the BGND ingtruction
when operating in POD mode. A breakpoint may not be set on a user SWI ingtruction when operating
in EVB mode. In either mode, breakpoints may only be set a an opcode address, and bregkpoints
may only be placed a& memory addressesin aterable memory.

Even though D-Bugl2 supports a maximum of 10 user-defined breskpoints, a maximum of 9
breskpoints may be set on the command line a one time. This redtriction is due to the limitation of the
command-line processor, which dlows a maximum of 10 command-line arguments, including the
commeand siring.

When operating in POD mode, new breakpoints may not be set with the BR command when the 'R>"
prompt is displayed. However, the BR command may be used to display breakpoints that are currently
&t in the user's running program.

D-Bugl2 version 2.0.0 does not support the MC68HC912BC32's hardware breakpoint (H/W)
function. Later verdons of D-Bugl2, which may support this function, can be obtained from the
sources listed in Obtaining D-Bugl12 Upgrades on page E-5.

3-16 68EVB912BC32UM/D

@ MOTOROLA OPERATION

example:

>BR 35ec 2f80 c¢592
Br eakpoi nts: 35EC 2F80 (592

>BR
Br eakpoi nts: 35EC 2F80 C592

>

68EVB912BC32UM/D 3-17

OPERATION @ MOTOROLA

BULK Bulk Erase EEPROM BULK

syntax:
BULK

The BULK command is used to erase the entire contents of byte-erassble EEPROM in a single
operation. After the bulk erase operation has been performed, each on-chip EEPROM locetion is
checked for an erased condition.

restrictions;

In order to erase EEPROM, the EEPROM block-protect control bits must be cleared. Refer to the
MC68HC912BC32 Technical Summary for locations and operation of the block-protect controls.

example:
>BULK

F/ EEPROM Fai | ed To Erase
>BULK

>

3-18 68EVB912BC32UM/D

@ MOTOROLA OPERATION

CALL Call Subroutine CALL

syntax:
CALL [<Address>]

where:
<Address> isan optiona 16-hit hexadecima number.

The CALL command is used to execute a subroutine and return to the D-Bug12 monitor program when
the final RTS of the subroutine is executed. When control is returned to D-Bugl12, the CPU register
contents are displayed. All CPU regigters contain the vaues a the time the find RTS indruction was
executed, with the exception of the program counter (PC). The PC contains the starting address of the
subroutine. If a subroutine address is not supplied on the command line, the current vdue of the
Program Counter (PC) is used as the starting address.

NOTE:

No user breskpoints are placed in memory before execution is
transferred to user code.

restrictions;

If the called subroutine modifies the value of the stack pointer during its execution, it must restore the
gtack pointer's origina vaue before executing the find RTS of the caled subroutine. This redtriction is
required because a return address is placed on the users stack that returns to D-Bug12 when the find
RTS of the subroutine is executed. Obvioudy, any subroutine must obey this restriction to execute

properly.

The CALL command cannot be issued when the 'R>" prompt is digplayed, indicating that the target
system is dready running a user program.

example:
>CALL 820
Subroutine Call Returned
PC SP X Y D=AB CCR = SXH NzVC
0820 O0AO00 057C 0000 OF: F9 1001 0000
>

68EVB912BC32UM/D 3-19

OPERATION @ MOTOROLA

DEVICE Specify Target MCU Device DEVICE
syntax:
DEVI CE
DEVI CE <Devi ceNane> [<EESt art > <EEEnd> <FStart >
<FEnd> <RAMSt art > <RAMEnd> <| OBase>]
where:
<DeviceName> is the maximum of 7 ASCII characters used to sdect/define a target
MCU device.
<EEStart> is the on-chip EEPROM darting address, a 16-bit hexadecima
number.
<EEEnd> is the on-chip EEPROM ending address; a 16-bit hexadecima number.
<FStart> isthe on-chip Flash EEPROM dgarting address; a 16-bit hexadecimal
number.
<FEEnd> is the on-chip Flash EEPROM ending address; a 16-bit hexadecimal
number.
<RAMStart> isthe on-chip RAM garting address; a 16-bit hexadecima number.
<RAMEnNd> isthe on-chip RAM ending address; a 16-bit hexadecima number.
<IOBase> is the base address of the on-chip 1/O registers, a 16-bit hexadecima
number.

Sdlecting the proper target MCU with the DEVICE command provides D-Bugl2 the information
necessary to alow transparent dteration of the target MCU's on-chip EEPROM using any D-Bugl2
commands that modify memory. It dso provides the necessary information to adlow the programming
and erasure of on-chip Flash EEPROM. |n addition, it dlows D-Bug12 to initidize the stack pointer to
the top of on-chip RAM when the target MCU isreset by use of the RESET command. The DEVICE
command has three separate command line formats that adlows for the display, sdection and/or
definition of target device parameters.

Entering "DEVICE' on the command line followed by a carriage return displays the name of the
currently selected device, the on-chip EEPROM’s garting and ending address, the on-chip Flash
EEPROM'’s garting and ending address, the on-chip RAM’ s starting and ending address, and the I/O
Base address. This form of the command may be used when D-Bugl2 is operdting in either EVB or
POD mode.

When D-Bugl12 is operated in the POD mode, the DEVICE command may also be used to sdlect or
define a new target device. Entering the DEVICE command followed only by a device name configures

3-20 68EVB912BC32UM/D

@ MOTOROLA OPERATION

D-Bugl2 for operation with the selected target device. The default device list contains entries for the
MC68HC912B32 and the MC68HC812A4. The MC68HC912B32 entry also supports the
MC68HC912BC32. The table bdow shows the command line name to use for the two default MCU
devices.

Device Name | Target MCU

912B32 MC68HC912B32

812A4 MC68HC812A4

Entering the DEVICE command followed by a device name and seven hexadecima parameters dlows
new devices to be added to the target device table or existing device table entries to be modified.
When a new device is added or when an existing device entry is modified, it becomes the currently
selected device. If a new device does not contain a particular on-chip resource, such as Flash
EEPROM, avaue of zero should be entered for the starting and ending addresses

Because the target device data and the current device selection are stored in the probe MCU’ s on-chip
EEPROM, new device information and the device selection are retained when power is removed from
the POD. If the M6BEVB912BC32 is operated in EVB mode and the contents of any locations of the
on-chip EEPROM are dtered it is strongly recommended that the on-chip EEPROM be completely
erased by usng the BULK command before using the EVB in POD mode again. Erasing the on-chip
EEPROM causes D-Bugl2 to reinitiaize the device table with the two default MCU devices. The
information for any new devices that were added to the table will be logt.

restrictions;

When operating the M68EVB912BC32 in EVB mode, the DEVICE command may only be used to
display the current device information.

The DEVICE command maintains a 16-bit checksum on the contents of the entire on-chip EEPROM to
maintain the integrity of the device table. If any of the on-chip EEPROM locations are dtered while
operating the M68EVB912BC32 in EVB mode, D-Bugl2 will reinitidize the device table with the
default device information contained in the on-chip Hash EEPROM. However, it is possble for the
checksum verification to fall (one case where the checksum will fall is if the entire contents of the on-
chip EEPROM is programmed with zeros). Therefore, it is strongly recommended that the on-chip
EEPROM be completely erased by using the BULK command before using the EVB in POD mode
agan. Usng the EVB in Probe mode with a corrupt device data table may cause D-Bugl2 to operate
in an unpredictable manner.

The 768 bytes of on-chip EEPROM dlows atotal of 34 entries in the device table. Do not exceed
this number.

When adding a new device to the device table, the addresses provided for the on-chip Flash

EEPROM, on-chip RAM and the I/O Regigters should reflect the locations of these resources when the
part isreset. Thisrequirement is necessary for the FBULK and FLOAD commands to work properly.

68EVB912BC32UM/D 3-21

OPERATION @ MOTOROLA

example:
>DEVI CE

Devi ce: 912B32

EEPROM $0D00 - $O0FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $O0BFF

I/ O Regs: $0000

S>DEVI CE 912b32 1d00 1fff 8000 ffff 800 bff O

Devi ce: 912B32

EEPROM $1D00 - $1FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $O0BFF

I/ O Regs: $0000

S>DEVI CE 812a4

Devi ce: 812A4

EEPROM $1000 - $1FFF
RAM $0800 - $0BFF

| /O Regs: $0000

S>

3-22 68EVB912BC32UM/D

@ MOTOROLA OPERATION

EEBASE Specify Target EEPROM EEBASE
Base Address
syntax:
EEBASE <Addr ess>
where:
<Address> isan optiona 16-hit hexadecima number.

Each time D-Bugl2 peforms a memory write, it auttomaticdly performs the necessary register
manipulations to program the on-chip EEPROM if the write operation fals within the address range of
the target’s on-chip EEPROM. Because user code may change the EEPROM’s base address by
writing to the INITEE regigter, D-Bugl2 mugt be informed of the EEPROM’s location if automeatic
EEPROM writes are to occur. The EEBASE command is used to specify the base address of the
target processor’s on-chip EEPROM.

When operating in EVB mode, the default EEPROM base address and range are specified in the
customization data variables Cust onDat a. EEBase and Cust onDat a. EESi ze. The vaue
in Cust onDat a. EEBase is used by the startup code to remap the EEPROM. The EEBASE
command may not be used to relocate the 1/0 registers.

When operating in POD mode, the target’s default EEPROM base address and range are specified by
the currently-selected device (See the DEVICE command for additional detalls).

The EEBASE command does not check to ensure that the parameter is a valid base address for the
sedected MG6BHC12 family member. If an improper base address is provided, automatic programming
of the on-chip EEPROM will not operate properly.

NOTE

The EEBASE command does not automaticdly modify the INITEE
register. It is the respongbility of the user to ensure that the INITEE
regiser is modified ether manudly or through the execution of user
code.

restrictions;

The EEBASE command may hot be used when D-Bugl2 is operated in EVB mode.

68EVB912BC32UM/D 3-23

OPERATION

example:

3-24

S>DEVI CE

Devi ce: 912B32

EEPROM $0D00 - $0FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $0BFF

I /O Regs: $0000

S>EEBASE 1d00

Devi ce: 912B32

EEPROM $1D00 - $1FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $O0BFF

I /O Regs: $0000

S>MM 12
0012 01 11
0013 OF .
S>MD 1d00

1D00 FF FF FF FF -
S>

FF FF FF FF -

FF FF FF FF -

FF FF FF FF

68EVB912BC32UM/D

@ MOTOROLA OPERATION

FBULK Erase Target Flash FBULK
EEPROM
syntax:
FBULK

The FBULK command is used to erase the entire contents of the target MCU’s on-chip Flash
EEPROM in asingle operation. After the bulk erase operation has been performed, each on-chip Flash
location is verified. If the contents are not $FF, an error message is displayed.

The target processor’'s Flash EEPROM s erased by resetting the target processor and then loading a
smdl driver program into the target processor’s on-chip RAM. For this reason, the previous contents
of the target processor’ s on-chip RAM are lost.

restrictions;

When operating in the EVB mode, the FBULK command cannot be used. If the FBULK command is
entered whilein EVB mode, an error message is displayed and command execution is terminated.

Before usng the FBULK command, a target device must have been sdected with the DEVICE
command that reflects the locations of the target’ s on-chip Flash EEPROM, on-chip RAM, and the 1/O
registers when the part isreset. Failure to follow this restriction will cause the FBULK command to fall
and may require that the EVB be reset.

Flash EEPROM programming voltage (Vpp) must be gpplied to the target MCU. If the target systemis
another MG68EVB912BC32 board, Vpp may be supplied via header J13, with header J12 set
accordingly. For more information on these EVB headers, see Table 4-1.

Because the FBULK command downloads a smal "driver” program into the target MCU's on-chip
RAM, DBugl2s breskpoint table is cleared before beginning execution of the "driver”. This is
necessay to prevent previoudy-set breskpoints from accidentally hdting the execution of the driver

program.

68EVB912BC32UM/D 3-25

OPERATION @ MOTOROLA

example:

S>FBULK

Fl ash Programm ng Vol tage Not Present
S>FBULK

F/ EEPROM Fai |l ed To Erase

S>FBULK

S>

>FBULK
Command Not Al |l owed I n EVB Mde
>

3-26 68EVB912BC32UM/D

@ MOTOROLA OPERATION

FLOAD Program Target Flash FLOAD
EEPROM

syntax:
FLOAD [<Addr essO f set >]

where:
<AddressOffsat> isa 16-bit hexadecima number.

The ALOAD command is used to program a target device's Flash EEPROM memory with the data
contained in S-Record object files. The address offset, if supplied, is added to the load address of each
S-Record before the S-Record’ s data bytes are placed in memory. Providing an address offset other
than zero dlows object code or data to be programmed into memory at a location other than that for
which it was assembled or compiled.

The programming of the on-chip Hash EEPROM uses an dgorithm where the time required to program
each byte or word can vary from as little as 60 pS to as long as 3.5 mS fote, however tha the
programming time for each byte or word should typicaly take no more than 120-180 uS). Because of
this variability, the FLOAD command uses a software handshaking protocol to control the flow of
S-Record data from the host computer. When the FLOAD command is ready to receive an S-Record,
an ASCII agterisk character (*) is sent to the host computer. The host computer should respond by
sending asngle S-Record. The S-Record may include a carriage return and/or line feed character(s).
Most commercid termind programs that are capable of sending ASCII text files have the ability to wait
for a specific character or characters before sending aline of text.

The FLOAD command is terminated when D-Bugl2 receives an "S9" end-of-file record. If the object
file being loaded does not contain an "S9" record, D-Bug12 does not return its prompt and continues to
wait for the end-of-file record. Pressng the reset switch returns D-Bug12 to its command line prompt.

restrictions;

The host program used to send the S-Record data must be capable of waiting for an ASCII asterisk
character (*) before sending each S-Record line.

Because the on-chip FHash EEPROM is only bulk-erasable, the FBULK command should be used
before loading new datainto Flash EEPROM with the FLOAD command.

The FLOAD command cannot be used with S-Records that contain a code/data field longer than 64
bytes. Sending an S-Record with alonger fild may cause D-Bug12 to crash or load incorrect data into
the Flash EEPROM.

Before using the FLOAD command, a target device must have been sdlected using the DEVICE
command that reflects the locations of the on-chip Flash EEPROM, on-chip RAM, and the 1/0O

68EVB912BC32UM/D 3-27

OPERATION @ MOTOROLA

registers when the part is reset. Failure to follow this restriction will cause the FLOAD command to fall
and may require that the EVB be reset.

Flash EEPROM programming voltage (Vpp) must be applied to the target MCU. If the target systemis
another MG68EVB912BC32 board, Vpp may be supplied via header J13, with header J12 set
accordingly. For more information on these EVB headers, see Table 4-1.

Because the FLOAD command downloads a smal "driver” program into the target MCU's on-chip
RAM, DBugl2's breskpoint table is cleared before beginning execution of the "driver”. This is
necessary to prevent previoudy st breakpoints from accidentaly hating the execution of the driver

program.

example:

S>FLOAD
Fl ash Progranmm ng Vol tage Not Present
S>FLQAD

PR O
R R R R R R R R R R R EEEEEEEE R R R E R R R R R R R R R

EE R R R R I R

S>

3-28 68EVB912BC32UM/D

@ MOTOROLA OPERATION

G Go Execute a User Program G

syntax:
G [<Address>]

where:
<Address> isan optiona 16-hit hexadecima number.

The G command is used to begin the execution of user codein red time. Before beginning execution of
user code, any breskpoints that were set with the BR command are placed in memory. Execution of
the user program continues until a user breakpoint is encountered, a CPU exception occurs, the STOP
or RESET command is entered, or the EVB’ sreset switch is pressed.

When user code hdts for any of these reasons (except reset, which wipes the date clean) and control is
returned to D-Bugl2, a message is displayed explaining the reason for user program termination. In
addition, D-Bugl12 disassembles the ingtruction at the current PC address, prints the CPU12's register
contents, and waits for the next D-Bug12 command to be entered by the user.

If agtarting address is not supplied in the command line parameter, program execution will begin at the
address defined by the current value of the Program Counter.

restrictions;

The G command cannot be issued when the "R>" prompt is displayed, indicating thet the target system
isdready running a user program.

example:

S>G 800
R>MD 1000

1000 FF FF FF FF - FFFFFF FF - FFFF FFFF - FFFFFFFF
R>
User Breakpoi nt Encountered

PC SP X Y D=AB CCR = SXH NzVC
0820 O09FE 057C 0000 00: 00 1001 0100
0820 08 I NX
S>

68EVB912BC32UM/D 3-29

OPERATION @ MOTOROLA

GT Go Til GT

syntax:
Gl <Address>

where:
<Address> is a 16-hit hexadecima number.

The GT command is amilar to the G command except that a temporary breakpoint is placed & the
address supplied on the command line. Any breakpoints that were set by the use of the BR command
are NOT placed in the user code before program execution begins. Program execution begins at the
address defined by the current vaue of the Program Counter. When user code reaches the temporary
breakpoint and control is returned to D-Bugl2, a message is displayed explaining the reason for user
program termination. In addition, D-Bugl2 disassembles the ingtruction at the current PC address,
prints the CPU12' sregister contents, and waits for acommand to be entered by the user.

restrictions;

The GT command cannot be issued when the "R>" prompt is displayed, indicating that the target system
isdready running a user program.

example:

S>GTI 820
R>
Tenporary Breakpoi nt Encountered

PC SP X Y D=AB CCR = SXH NzVvC
0820 O09FE 057C 0000 00: 00 1001 0100
0820 08 I NX
S>

3-30 68EVB912BC32UM/D

@ MOTOROLA OPERATION

HELP Onscreen Help Summary HELP
syntax:
HELP

The HELP command is used to display a summary of the D-Bugl2 command set. Each command is
shown aong with its command line format and a brief description of its function.

restrictions:

None.

68EVB912BC32UM/D 3-31

OPERATION @ MOTOROLA

example:
>HELP
ASM <Address> Single |line assenbl er/di sassenbl er
<CR> D sassenbl e next instruction
<.> Exit assenbl y/ di sassenbly

BAUD <baudrate> Set communications rate for the term nal

BF <Start Address> <EndAddress> [<data>] Fill nmenory with data
BR [<Address>] Set/Display user breakpoints

BULK Erase entire on-chi p EEPROM contents

CALL [<Address>] Call wuser subroutine at <Address>

DEVI CE [<DevNane> [<Address>...<Address>]] display/sel ect/add
target device

EEBASE <Address> Set base address of on-chi p EEPROM

FBULK Erase entire target Flash contents

FLOAD [<AddressOffset>] Load S-Records into target Flash

G [<Address>] Begi n/continue execution of user code

Gl <Address> Set tenporary breakpoint at <Address> & execute
user code

HELP Display this D Bugl2 conmmand sunmary

LOAD [<AddressOrfset>] Load S-Records into nmenory

MD <St art Address> [<EndAddress>] Menory Display Bytes

MDW <St art Addr ess> [<EndAddress>] Menory Di splay Wrds

MM <St ar t Addr ess> Modi fy Menory Bytes

<CR> Exami ne/ Modi fy next | ocation

</> or <=> Exam ne/ Modi fy same | ocation

<M> or <-> Exam ne/ Modi fy previous | ocation
<. > Exit Modify Menory conmand

MWV <St art Address> Mdify Menory Wrds (same subconmands as M)
MOVE <St art Addr ess> <EndAddr ess> <Dest Addr ess> Move a bl ock of
nmenory
NOBR [<address>] Renobve One/ All Breakpoint(s)
RD Display all CPU registers
REGBASE <Address> Set base address of I/Oregisters
RESET Reset target CPU
RM Modify CPU Regi ster Contents
STOP Stop target CPU
T [<count>] Trace <count> instructions
UPLOAD <StartAddress> <EndAddress> S-Record Menory displ ay
VERF [<AddressOfset>] Verify S-Records agai nst nmenory
contents
<Regi st er Nane> <Regi ster Value> Set register contents
Regi ster Nanes: PC, SP, X, Y, A B, D
CCR Status Bits: S, XM H IM N 2z V, C

3-32 68EVB912BC32UM/D

@ MOTOROLA OPERATION

LOAD Load S-Record File LOAD
syntax:

LOAD [<AddressO fset>]

{Send Fil e}
where:

<AddressOffset> isan optiona 16-bit hexadecima number.

{Send File} is the host-computer communications program’s utility for sending an
ACIl (text) filee Refer to Appendix B 3% Communications
Program Examples.

The LOAD command is used to load S-Record object files into memory from an externa device. The
address offst, if supplied, is added to the load address of each SRecord before its data bytes are
placed in memory. Providing an address offset other than zero alows object code or data to be loaded
into memory at alocation other than that for which it was assembled. During the loading process, the
S-Record data is not echoed to the control console. However, for each ten SRecords that are
successfully loaded, an ASCII asterisk character (*) is sent to the control console, When an S Record
file has been successfully loaded, control returns to the D-Bugl12 prompt.

The LOAD command is terminated when D-Bug12 receives an S9 end-of-file record. If the object file
being loaded does not contain an S9 record, D-Bug12 does not return its prompt and continues to wait
for the end-of-file record. Pressing the reset switch returns D-Bug12 to its command line prompt.

restrictions:

When operating in POD mode, the LOAD command does not support standard baud rates above
38400. This is due to the overhead involved in the implementation of the custom serid protocol
required by the single-wire Background Debug Mode interface.

example:
>LOAD 1000

kkkkhkhkhkkikhkkkhkhkkkkikkikk*%

>

68EVB912BC32UM/D 3-33

OPERATION @ MOTOROLA

MD Memory Display MD

syntax:
MD <StartAddress> [<EndAddress>]

where:
<StartAddress> isa16-bit hexadecima number.
<EndAddress> isan optiona 16-bit hexadecima number.

The Memory Display command displays the contents of memory as both hexadecima bytes and ASCI|
characters, 16-bytes on each line. The <SartAddress> parameter must be supplied; the
<EndAddress> parameter is optiond. When the <EndAddress> parameter is not supplied, asingle line
isdisplayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower multiple of
16, while the number supplied as the <EndAddress> parameter is rounded up to the next higher multiple
of 16 - 1. This causes each line to display memory in the range of $xxx0 through $xxxF. For example,
if $205 is entered as the start address and $217 as the ending address, the actua memory range
displayed would be $200 through $21F.

restrictions;
None.

example:

>MD 800
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 OD - B7 56 78 20 ..7j..".5.x..VWX

>MD 800 87f
0800 AA 04 37 6A - 00 06 27 F9 - 35 AE 78 OD - B7 56 78 20 ..7j..".5.x..WX
0810 B6 36 27 F9 - 35 AE 27 F9 - 35 9E 27 F9 - 35 BEB5 28 .6'.5.".5.".5..(
0820 27 F9 35 D6 - 37 B8 00 OF - 37 82 01 OA - 37 36 FF FO '.5.7

7

0830 7C 10 37 B3 - 00 00 37 B6 - 00 OF AA 04 - A5 02 37 B6 |.7... .
0840 00 OF 27 78 - 37 6A 00 06 - 27 F9 35 78 - 27 F9 35 56 ..'X7j..'.5x" .5V
0850 78 0D B7 10 - 78 3B 37 86 - 00 DC 27 F9 - 35 48 78 57 x...X;7...".5HxW
0860 37 86 00 DE - F5 01 EA 09 - 37 B5S OD OA - 27 F9 36 2A 7....... 7...".6*

0870 A5 00 37 65 - 00 02 27 F9 - 35 E8 37 9C - 37 4CF5 02 ..7e..'.5.7.7L..
>

3-34 68EVB912BC32UM/D

@ MOTOROLA OPERATION

MDW Memory Display, Word MDW

syntax:
MDW <Start Address> [<EndAddress>]

where:
<StartAddress> isa16-bit hexadecima number.
<EndAddress> isan optiona 16-bit hexadecima number.

The Memory Display Word command displays the contents of memory as hexadecima words and
ASCIl characters, 16-bytes on each line. The <StartAddress> parameter must be supplied; the
<EndAddress> parameter is optiond. When the <EndAddress> parameter is not supplied, asingle line
isdisplayed.

The number supplied as the <StartAddress> parameter is rounded down to the next lower multiple of
16, while the number supplied as the <EndAddress> parameter is rounded up to the next higher multiple
of 16 - 1. This causes each line to display memory in the range of $xxx0 through $xxxF. For example,
if $205 is entered as the start address and $217 as the ending address, the actua memory range
displayed would be $200 through $21F.

restrictions;
None.

example:

>VDW 800
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j.."'.5.x..VX

>MDW 800 87f
0800 AA04 376A - 0006 27F9 - 35AE 780D - B756 7820 ..7j..".5.x..VWX
0810 B636 27F9 - 35AE 27F9 - 359E 27F9 - 35BE B528 .6'.5."'.5.".5..(
0820 27F9 35D6 - 37B8 000OF - 3782 010A - 3736 FFFO '.5.7

7

0830 7C10 37B3 - 0000 37B6 - OOOF AAO04 - A502 37B6 |.7... .
0840 OOOF 2778 - 376A 0006 - 27F9 3578 - 27F9 3556 ..'Xx7j..'.5x" .5V
0850 780D B710 - 783B 3786 - 00DC 27F9 - 3548 7857 x...Xx;7...'.5HxW
0860 3786 OODE - F501 EAQ9 - 37B5 ODOA - 27F9 362A 7....... 7...".6*

0870 A500 3765 - 0002 27F9 - 35E8 379C - 374C F502 ..7e..'.5.7.7L..
>

68EVB912BC32UM/D 3-35

OPERATION @ MOTOROLA

MM Memory Modify MM

syntax:
MM <Address> [<Data>]

where:

<Address> Isal6-bit hexadecima number.

<Data> isan optiona 8-bit hexadecima number.
The Memory Modify command alows the contents of memory to be examined and/or modified as 8-bit
hexadecimal data. If the 8-bit data parameter is present on the command line, the byte a memory
location <Address> is replaced with <Data> and the command is terminated. If not, D-Bugl2 enters
the interactive memory modify mode. In the interactive mode, each byte is displayed on a separate line
following the datals address. Once the memory modify command has been entered, single-character

sub-commands are used for the modification and verification of memory contents. These sub-
commands have the following format:

[<Data>] <CR> Optionally update current location and display the next location.
[<Data>] </> or <=> Optiondly update current location and redisplay the current location.
[<Data>] <> or <-> Optiondly update current location and display the previous location.
[<Data>] <.> Optiondly update current location and exit Memory Modify.

With the exception of the carriage return, the sub-command must be separated from any entered data

with at least one space character. If an invaid sub-command character is entered, an appropriate error
message isissued and the contents of the current memory location are redisplayed.

restrictions:
While there are no redtrictions on the use of the MM command, caution should be used when modifying

target memory while user code is running. Accidentaly modifying target memory containing program
code could lead to program runaway.

3-36 68EVB912BC32UM/D

(::) MOTOROLA

OPERATION

example

>MM 800

0800
0801
0802
0801
0802
0803
0803

00
FO
00
FF
00
08
55

<CR>
FF

<CR>
<CR>
55 /

68EVB912BC32UM/D

3-37

OPERATION @ MOTOROLA

MMW Memory M odify, Word MMW

syntax:
MWV <Address> [<Dat a>]

where:
<Address> isa16-bit hexadecima number.
<Data> isan optiona 16-bit hexadecima number.

The Memory Modify Word command alows the contents of memory to be examined and/or modified

as 16-bit hexadecimd data. If the 16-bit data parameter is present on the command line, the word at

memory location <Address> is replaced with <Data> and the command is terminated. If not, D-Bugl2

enters the interactive memory modify mode. In the interactive mode, each word is displayed on a
separate line following the datas address. Once the memory modify command has been entered,

sngle-character sub-commands are used for the modification and verification of memory contents.

These sub-commands have the following format:

[<Data>] <CR> Optionally update current location and display the next location.
[<Data>] </> or <=> Optiondly update current location and redisplay the current location.
[<Data>] <> or <-> Optiondly update current location and display the previous location.
[<Data>] <.> Optiondly update current location and exit Memory Modify.

With the exception of the carriage return, the sub-command must be separated from any entered data

with at least one space character. If an invaid sub-command character is entered, an appropriate error
message isissued and the contents of the current memory location are redisplayed.

restrictions;
While there are no restrictions on the use of the MMW command, caution should be used when

modifying target memory while user code is running. Accidentdly modifying target memory containing
program code could lead to program runaway.

3-38 68EVB912BC32UM/D

@mmnam

OPERATION

example:

>MMWV 800

0800
0802
0804
0802
0804
0806

00FO
0008
843F
AA55
843F
G000

68EVB912BC32UM/D

3-39

OPERATION @ MOTOROLA

MOVE M ove M emory Block

syntax:
MOVE <Start Address> <EndAddress> <Dest Address>

where:
<StartAddress> Isa 16-bit hexadecima number.
<EndAddress> isa 16-bit hexadecima number.
<DestAddress> isa16-bit hexadecimal number.

The MOVE command is used to move a block of memory from one location to another, one byte a a
time. The number of bytes moved is one more than the <EndAddress> - <StartAddress>. The block
of memory beginning a the dedtination address may overlgp the memory block defined by the

<StartAddress> and <EndAddress>.

One of the uses of the MOVE command might be to copy a program from RAM into the on-chip

EEPROM memory.

restrictions:

A minimum of one byte may be moved if the <StartAddress> is equd to the <EndAddress>. The

maximum number of bytes that may be moved is 2°-1.

Caution should be exercised when moving target memory while user code is running. Accidentaly

modifying target memory containing program code could lead to program runaway.

example:

>MOVE 800 8ff 1000
>

3-40

68EVB912BC32UM/D

@ MOTOROLA OPERATION

NOBR Remove Breakpoints NOBR

syntax:
NOBR [<Address> <Address> ...]

where:
<Address> isan optiona 16-hit hexadecima number.
The NOBR command can be used to remove one or more previoudy entered breakpoints. If the

NOBR command is entered without any arguments, al user breskpoints are removed from the
breakpoint table.

restrictions:

When operating in the POD mode, breakpoints may not be removed with the NOBR command when
the "R>" prompt is displayed.

example:

>BR 800 810 820 830
Breakpoi nts: 0800 0810 0820 0830

>NOBR 810 820
Br eakpoi nts: 0800 0830

>NOBR
Al |l Breakpoi nts Renoved

>

68EVB912BC32UM/D 341

OPERATION @ MOTOROLA

RD Register Display RD
syntax:
RD
The Regigter Display command is used to diplay the CPU12' sregisters.
restrictions:

When operating in POD mode, the CPU registers may not be displayed when the R>" prompt is
displayed.

example:
>RD
PC SP X Y D=AB CCR = SXH NzvC
0206 O03FF 1000 3700 27: FF 1001 0001

>

3-42 68EVB912BC32UM/D

@ MOTOROLA OPERATION

REGBASE Specify Target EEPROM REGBASE
Register Address

syntax:
REGBASE <Addr ess>

where:
<Address> isa 16-bit hexadecima number.

Because D-Bugl12 supports the ability to transparently program the on-chip EEPROM of the target
MCU, it must know the base address of the I/O registers. Because user code may change the register
block’s base address by writing to the INITRG register, D-Bugl2 must be informed of the register
block’ s base address for transparent EEPROM writes to occur. The REGBASE command is used to
specify the base address of the target processor’s on-chip registers.

The REGBASE command does not check to ensure that the <Address> parameter is a valid base
address for the selected M68HC12 family member. If an improper register base address is provided,
automatic programming of the on-chip EEPROM will not operate properly.

When operating in EVB mode, the default register base address is specified in the cutomization data
vaiableCust onDat a. | OBase. Thisvaueisused by the startup code to remap the I/O regigters.
The REGBASE command may not be used to relocate the 1/0 regigters.

NOTE

The REGBASE command does not autometically modify the INITRG
regigter. It is the responghility of the user to ensure that the INITRG
regiger is modified ether manudly or through the execution of user
code.

restrictions;

The REGBA SE command may not be used when D-Bugl2 is operated in the EVB mode.

68EVB912BC32UM/D 3-43

OPERATION

example:

3-44

S>DEVI CE

Devi ce: 912B32
EEPROM $0D00 - $0FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $0BFF

I /O Regs: $0000

S>REGBASE 2000

Devi ce: 912B32
EEPROM $0D00 - $0FFF
Fl ash: $8000 - $FFFF
RAM $0800 - $O0BFF
|/ O Regs: $2000

S>

68EVB912BC32UM/D

@ MOTOROLA OPERATION

RESET Reset Target MCU RESET

syntax:
RESET

The RESET command is used to reset the target system processor when operating in D-Bugl2's POD
mode. The target processor’sreset pin is held byte-erasable for gpproximately 2 mS. When the reset
lineisreleased, BDM commands are sent to the target processor to placeit in active background mode.
The target processor’ s regigters are initidized with the same vaues used for the registers when operating
in EVB mode.

The effects of the RESET command may be different from a user assartion of the target's RESET* pin:

When the RESET command is issued, the host EVB controls the state of the target's
BKGD pin, placing the target processor in Specia mode and active background execution.

When a user assertion of the target's RESET* pin occurs, the target processor may enter
either Specid or Norma mode, depending on the date of its BKGD pin. D-Bugl2
displays a message indicating that the target processor has been reset.

restrictions;

When operating in the EVB mode, the RESET command cannot be used. If the RESET command is
entered whilein EVB mode, an error message is displayed and command execution is terminated.

example:

S>RESET

Target Processor Has Been Reset
S>G 4000

R>RESET

Target Processor Has Been Reset
S>

68EVB912BC32UM/D 3-45

OPERATION @ MOTOROLA

RM Register M odify RM

syntax:
RM

The Register Modify command is used to examine and/or modify the contents of the CPU12's registers
in an interactive manner. As each register and its contents is displayed, DBugl2 alows the user to
enter anew vaue for the register in hexadecimd. If modification of the displayed register is not desired,
entering a carriage return will cause the next CPU12 register and its contents to be displayed on the next
line. When the lagt of the CPU12's regigters has been examined and/or modified, the RM command
displaysthefirg register, giving the user an opportunity to make additiona modifications to the CPU12's
register contents. Typing a period () as the first non space character on the line will exit the interactive
mode of the register modify command and return to the D-Bugl2 prompt. The registers are displayed
in the following order, one register per line PC, SP, X, Y, A, B, CCR.

restrictions;

When operating in POD mode, the CPU registers may not be modified when the R>" prompt is
displayed.

example:

>RM
PC=0206 200
SP=03FF <CR>
X=1000 1004
Y=3700 <CR>
A=27 <CR>
B=FF <CR>
CCR=D0 D1
PC=0200 .

>

3-46 68EVB912BC32UM/D

@ MOTOROLA OPERATION

STOP Stop Execution on Target STOP
MCU
syntax:
STOP

When operating in D-Bugl2's POD mode, the STOP command is used to halt target program
execution and place the target processor in active Background Debug Mode.

restrictions;

When operating in the EVB mode, the STOP command cannot be used. If the STOP command is
entered whilein EVB mode, an error message is displayed and command execution is terminated.

example:
S>ASM 4000
4000 CCFFFF LDD #$FFFF
4003 830001 SUBD #$0001
4006 26FB BNE $4003
4008 20F6 BRA $4000
400A 00 BGN\D >,
S>G 4000
R>STOP
Target Processor Has Been Stopped
PC SP X Y D= AB CCR = SXH NzVC
4003 O0OAOO0 0000 0000 37: 3F 1101 0000
4003 830001 SUBD #$0001
S>

68EVB912BC32UM/D 3-47

OPERATION @ MOTOROLA

T Trace T
syntax:
T [<Count >]
where:
<Count> IS an optiona 8-bit decima number in the range 1 to 255.

The Trace command is used to execute one or more user program ingructions beginning at the current
Program Counter (PC) location. As each program ingtruction is executed, the CPU12's register
contents are displayed and the next ingtruction to be executed is displayed. A single ingtruction may be
executed by entering the trace command immediately followed by a carriage return.

restrictions;

Because of the method used to execute a single ingruction, branch ingructions (Bcc, LBcc, BRSET,
BRCLR, DBEQ/NE, IBEQ/NE, TBEQ/NE) that contain an offset that branches back to the instruction
opcode DO NOT execute. D-Bugl2 appears to become stuck at the branch instruction and does not
execute the ingruction even if the condition for the branch indruction is stisfied. This limitation can be
overcome by usng the GT (Go Till) command to set atemporary breskpoint at the ingtruction following
the branch ingtruction.

In EVB mode, the Trace command may only be used for code located in aterable memory.

These regtrictions do not goply when usng D-Bugl2 on atarget system in POD mode.

3-48 68EVB912BC32UM/D

@ MOTOROLA OPERATION
example:

>T

PC SP X Y D=A: B CCR=SXH NzVC

0803 O09FE 057C 0000 10: 00 1001 0000

0803 830001 SUBD #$0001

>T 3

PC SP X Y D=A: B CCR=SXH NzVC

0806 O09FE 057C 0000 OF: FF 1001 0000

0806 26FB BNE $0803

PC SP X Y D=A: B CCR=SXH NzVC

0803 O09FE 057C 0000 OF: FF 1001 0000

0803 830001 SUBD #$0001

PC SP X Y D=A: B CCR=SXH NzVC

0806 O09FE 057C 0000 OF: FE 1001 0000

0806 26FB BNE $0803

>
68EVB912BC32UM/D 3-49

OPERATION @ MOTOROLA

UPLOAD Display Memory in S-Record Format UPLOAD

syntax:
UPLOAD <StartAddress> <EndAddress>

where:
<StartAddress> isa 16-bit hexadecimd number.
<EndAddress> isa 16-bit hexadecima number.

The UPLOAD command is used to display the contents of memory in Motorola S'Record format. In
addition to displaying the specified range of memory, the UPLOAD command aso outputs an S9 end-
of-file record. The output of this command may be captured by the users terminal program and saved
toadisk file.

restrictions;
None.

example:

>UPLOAD 400 5ff
S123040000F0000843FCO000F50F379F37BF43FCF50F27FA757F177AFA047504177AFA21C5
S123042037B500FF37FAFB0437B5400037FAFB061735FB0037B500C137FAFA003715379C01
S1230440F50F379D37BC012C37BD400085009A003C023D02377C0140B6EE7AO0F400037B583
S1230460000337FAFAAC37FAFAS037FAFA5437B5502037FAFA4E37B5302037FAFAS237B58A
S1230480682037FAFA5637BD014037BC000095008A003C023D02377D0172B6EE37BD017259
S12304A037BC020095008A003C023D02377D018EB6EE27F937BOF50F379C37BCO0CE27F901
S12304CO000FC27F9104C27F90E68378000BE0AOD442D42756731362056312E3033202D20E3
S12304E04465627567204D6F6E69746F7220466F7220546865204D363848433136204661ED
S12305006D696C790A0D2843292031393932204D6F746F726F6C612053656D69636F6E64BD
S12305207563746F7220496E632E000037B5FF0237FAFA4837B578B037FAFA4A7AOFO05ES2
$12305400000000000000000020002040208020C021000000000000000000000000002144F
S$12305600000000000000000000000000000000002187A0F3BAC7AOF3BBC7AOF11E87A0F62
S12305803C727A0F3C847A0F3C967A0F3CA8F50F379C379D379E27FAFS50F379F37BF43FCES
S12305A07501177A4054173540523604361C27F90088B0D637BC01BC360227F70A0D3EO0A9
S12305C04500B70427F936BC3C01BOF027F7277537BC400017BC405027F936CC780DB60477
S12305E027F936A0274A27F77803B6FEBO3A7808B6162776B7DE3730000127F93686752002
S9030000FC

>

3-50 68EVB912BC32UM/D

@ MOTOROLA OPERATION

VERF Verify S-Record File against Memory VERF
syntax:

VERF [<AddressO f set >]

{Send Fil e}
where:

<AddressOffset> isan optiona 16-bit hexadecima number.

{Send File} is the host-computer communications program’s utility for sending an
ACIl (text) filee Refer to Appendix B 3% Communications
Program Examples.

The VERF command is used to compare the data contained in an SRecord object file to the contents
of EVB memory. The address offset, if supplied, is added to the load address of each S-Record before
an S-Record' s data bytes are compared to the contents of memory. Providing an address offset other
than zero alows the SRecord’s object code or data to be compared against memory other than that
for which the S-Record was assembled.

During the verification process, an ASCII asterisk character (*) is sent to the control console for each
ten SRecords that are successfully verified. When an SRecord file has been successfully verified,
control returns to the D-Bugl2 prompt.

If the contents of EVB memory do not match the corresponding data in the received SRecords, an
error message is displayed and the Verify command is terminated. D-Bugl2 then returns to its
command-line prompt. If the host computer continues to send S Records to the EVB, D-Bugl2 tries
to interpret each S-Record as a command and issues error message for each S-Record received.

If the contents of EVB memory matich the contents of the received SRecords, the Verify command
terminates when D-Bug12 receives an S9 end-of-file record. If the object file being verified does not
contain an S9 record, D-Bug12 continues to wait for an S9 record without returning to the command-
line prompt. Pressing the resat switch, S1, returns D-Bugl2 to its command-line prompt.

restrictions;
None.
example:

>VERF 1000

IR IR R S b I I b b S S Sk b S Rk e

>

68EVB912BC32UM/D 3-51

OPERATION

&

MOTOROLA

<Register Name>

syntax:

Modify Register Value

<Regi st er Nanme> <Regi st er Val ue>

where:
<RegigerName>

<RegigerVaue>

isan 8- or 16-bit hexadecima number.

Table 3-3. CPU12 Registers

<Register Name>

isone of the CPU12 regigerslisted in Table 3-3.

Register Name Description Legal Range
PC Program Counter $0 to $FFFF
SP Stack Pointer $0 to $FFFF
X X-Index Register $0 to $FFFF
Y Y-Index Register $0 to $FFFF
A A Accumulator $0 to $FF

B B Accumulator $0 to $FF

D D Accumulator (A:B) $0 to $FFFF
CCR Condition Code Register $0 to $FF

Each of the fieds in the Condition Code Register (CCR) may be modified by using the bit names in

Table 3-4.

Table 3-4. Condition Code Register Bits

CCR Bit Name Description Legal Values
S STOP Enable Oor1l
H Half Carry Oorl
N Negative Flag Oorl
Z Zero Flag Oor1l

3-52

68EVB912BC32UM/D

@ MOTOROLA OPERATION

Table 3-4. Condition Code Register Bits (continued)

CCR Bit Name Description Legal Values
\% Two's Complement Overflow Flag Oorl
C Carry Flag Oor1l
M IRQ Interrupt Mask Oorl
XM XIRQ Interrupt Mask Oorl

This set of "commands' uses a CPU12 regiger name as the command name to dlow changing the
register’s contents. Each register name or CCR bit name is entered on the command line followed by a
space, then followed by the new register or bit contents. After successful dteration of a CPU register
or CCR hit, the entire CPU register set is displayed.

restrictions:
None.
example:
>PC 700e
PC SP X Y D=A: B CCR=SXH NzVC
700E O0A00 7315 7De62 47: 44 1001 0000
>X 1000
PC SP X Y D=A: B CCR=SXHI NzVC
700E OA0O0 1000 7D62 47: 44 1001 0000
>C 1
PC SP X Y D=A: B CCR=SXH NzVC
700E O0AO0 1000 7D62 47: 44 1001 0001
>Z 1
PC SP X Y D=A: B CCR=SXHI NzVC
700E OA00 1000 7D62 47: 44 1001 0101
>D adf 7
PC SP X Y D=A: B CCR=SXH NzVC
700E O0A00 1000 7De62 AD: F7 1001 0101

>

68EVB912BC32UM/D 3-53

OPERATION @ MOTOROLA

3.7 OFF-BOARD CODE GENERATION

Code developed outside the EVB environment should be generated with an M68HC12-competible
assembler or C compiler that can generate object filesin S-Record format.

S-Records are described in Appendix A ¥ S-Record Format.

When the SRecord file has been generated, it may be loaded from the host computer into EVB
memory in the following ways

into the host EVB's byte-erasable EEPROM or RAM, using the D-Bugl2 commands
BULK and LOAD when the host EVB isin EVB mode

into the host EVB's byte-erasable or Flash EEPROM, using the EEPROM bootloader
when thehost EVB isin BOOTL OAD mode

into a target MCU's byte-erasable EEPROM or RAM, using the DBugl2 commands
BULK and LOAD when the host EVB isin POD mode

into atarget MCU's Flash EEPROM, using the D-Bug12 commands FBULK and FLOAD
when the hogt EVB isin POD mode

More information on the EVB operating modes, the D-Bugl2 commands, and the EEPROM
bootloader can be found in section 3.1, section 3.2.2, section 3.6, and Appendix E.

3.8 MEMORY USAGE

3.8.1 Description
The EVB’s memory usage and requirements are described below and summarized in Table 3-5.

The monitor program, D-Bug12, occupies the 32 Kbyte Flash EEPROM area of the MCU’s memory
map. To use the Flash EEPROM area for custom programs, refer to Appendix E EEPROM
Bootloader.

When operating in EVB mode, D-Bugl12 requires 512 bytes of on-chip RAM, from $0A00 to $0BFF,
for stack and variable storage. The remaining 512 bytes of on-chip RAM, from $0800 to $09FF, are
available for variable storage and stack space by user programs.

3-54 68EVB912BC32UM/D

@mmmm

OPERATION

NOTE

D-Bugl2 sets the default value of the user’s stack pointer to $0A00.
Thisis not amistake. The M68HC12's stack pointer points to the last
byte that was pushed onto the stack, rather than to the next available
byte on the stack, as the M68HC11 does. The M68HCI12 first
decrements its stack pointer, then stores data on the stack. The
M68HC11 dtores data on the stack and then decrements its stack

pointer.

3.8.2 Memory Map

Table 3-5. Factory-Configuration Memory Map

Address Range

Usage

Description

$0000 - $01FF

CPU registers

on-chip registers

$0800 - $09FF
$0A00 - $OBFF

user code/data

reserved for D-Bugl2

1K on-chip RAM

$0DO00 - $OFFF

user code/data

768 bytes on-chip EEPROM

$8000 - $F67F
$F680 - $FEBF
$F6CO - $F6FF
$F700 - $F77F
$F780 - $F7FF
$F800 - $FBFF
$FCO0 - $FFBF
$FFCO - $FFFF

D-Bugl12 code

user-accessible functions
D-Bug12 customization data
D-Bug12 startup code

interrupt vector jump table
reserved for bootloader expansion
EEPROM bootloader

reset and interrupt vectors

32 Kbytes on-chip Flash
EEPROM

3.9 OPERATIONAL LIMITATIONS
In EVB mode, D-Bug12 requires many of the MC68HC912BC32's resources for execution. In this

mode, the EVB cannot provide true emulation of atarget sysem. These limitations are described in the
following sections,

68EVB912BC32UM/D 3-55

OPERATION @ MOTOROLA

If target-system emulation is required, the EVB may be reprogrammed and controlled via the BDM
interface. Operation asatarget isdescribed in 3.1.3 POD (Probe) Mode.

3.9.1 On-Chip RAM

D-Bugl2 requires 512 bytes of on-chip RAM for stack and variable dorage. This usage is shown in
Table 3-5.

3.9.2 On-Chip EEPROM

D-Bugl2 occupies Flash EEPROM starting at address $3000, as shown in Table 3-5. Thisareaisthus
not available for emulation of atarget gpplication.

3.9.3 SCI Port Usage

D-Bugl2 requires the MCU’s Serid Communications Interface (SCI) port for the termina interface.
The SCI port is ether connected (default) or disconnected from the RS-232C RXD and TXD sgnals
by means of jumpers J6 and J8.

3.9.4 Dedicated M CU Pins

As used on the EVB with D-Bugl2, the following MCU lines perform specific functions. If an
goplication requires their use, the EVB hardware and/or operating software must be custom-configured,
or specia precautions must be taken in the gpplication code to avoid conflicts with the D-Bugl2 usage.

PADO — EVB mode sdlect pin (J2)
PAD1 — EVB mode sdect pin (J1)
PE5/MODA, and PE6/M ODB — Sets MCU chip mode, normaly single chip.

3-56 68EVB912BC32UM/D

@ MOTOROLA OPERATION

3.9.5 Terminal Communications

High baud rates occasiondly result in dropped characters on the termind display. Thisis not the result
of abaud rate mismatch; it is due to the host processor being too busy or too dow to process incoming
data at the selected baud rate. The D-Bugl2 MD, MDW, T, and HELP commands may be affected
by this problem. Sometimes the problem can be ignored without harm. If it requires correcting, try the
fallowing:

Use adower baud rate.

Try adifferent communications program.

In multitasking environments such as Windows 3.1 and the Maclntosh System 7, the
problem can occur when severd gpplications are running a once. Try closing unnecessary
applications or exiting Windows.

When using the MD, MDW, or T commands, try displaying fewer address locations or
tracing fewer indructions a atime,

68EVB912BC32UM/D 3-57

OPERATION @ MOTOROLA

3-58 68EVB912BC32UM/D

@ MOTOROLA HARDWARE REFERENCE

CHAPTER 4
HARDWARE REFERENCE

4.1 PCB DESCRIPTION
The EVB printed circuit board (PCB) isa5.15 by 3.4 inch (13.1 by 8.64 cm) board with four layers.

Most of the connection points on the EVB use headers spaced on 1/10-inch (2.54 mm) centers, with
the following exceptions.

Subminiature D connector for the RS-232C interface
Externd power-supply connections

4.2 CONFIGURATION HEADERS AND JUMPER SETTINGS

For maximum flexibility, the EVB uses two types of jumper headers.

Factory-installed headers are those most likely to be used for configuration without mgor
dteration of the EVB’s hardware operation. These headers are
populated, and the factory-instaled jumpers on them are preset for the
default EVB hardware and firmware (D-Bugl2) configurations. Table
4-1 ligs these headers by function and describes ther default and
optiona jumper settings.

Cut-trace header footprints offer EVB hardware options that are less likely to be changed.
These footprints are not populated. The default connection between
pinsis atrace on the PCB. To change a cut-trace footprint, the PCB
trace must be cut. To return to the origind configuration, a header and
ajumper must be ingtaled to re-establish the shunt.

NOTE

Use of the cut-trace header footprints requires a thorough
underganding of the MCU and of the EVB hardware. Refer to the
MC68HC912BC32 Technical Summary and to the EVB schematic
diagram for design information.

68EVB912BC32UM/D 4-1

HARDWARE REFERENCE @ MOTOROLA

CAUTION

When cutting a PCB trace to customize a header footprint, use a sharp
blade. Be careful to avoid persona injury and not to cut adjacent
traces.

KeytoTable4-1: Headers are depicted as viewed from ether the
component Sde as shown in Figure 1-1 or the solder
gdeasshownin Figure 1-2

2-pin header with no jumper ingtaled or
2-pin cut-trace header with trace cut

2-pin header with jumper indalled

2-pin cut-trace header with default trace intact

3-pin header with no jumper ingtaled

3-pin header with jumper ingaled on left 2 pins

K H ﬂ joo| 00 (@0

bold pin numbersindicate factory-default settings

1-2, cut italics indicate dternate settings

4-2 68EVB912BC32UM/D

@momnam

HARDWARE REFERENCE

Table4-1. Jumper and Header Functions

Diagram Pins Description
J1, J2 EVB Mode Selection
AlO®||@® J1-B EVB mode % execution from Flash EEPROM (D-Bug12 default)

B ®

J2-B

91-B | jump to EEPROM mode
J2-A

J1I-A POD mode 3% remote BDM
J2-B

J1I-A BOOTLOAD mode

J2-A
J3, J4, J5 RS-232C Configuration (reserved)
IEI in reserved
J6 RS-232C TXD Connection to SCI PS1
in TXD enabled
out TXD disconnected from SCI port
J7 120 Ohm termination impedance enable on CAN interface
P in Termination Impedance enabled
out
J8 RS-232C RXD Connection to SCI PS1
PP in RXD enabled
out RXD disconnected from SCI port
J9 CAN Physical Interface Connector
1 2 1 GND
e © 2 GND
© ® 3 CANH
o o 4 CANH
PR 5 CANL
6 CANL
7 7 GND
8 GND

68EVB912BC32UM/D

4-3

HARDWARE REFERENCE

@mommm

Table4-1. Jumper and Header Functions (continued)

Diagram Pins Description
J10 Clock Source Select
l@ 1-2 | Select on board oscillator module
1 2 3 2-3 Select external crystal circuit
Ji1 On-Board Crystal Enable
in On-board crystal connected to MCU EXTAL
out On-board crystal disabled % use J10 to provide provide clock from on
board oscillator module
J12 Vpp / Vdd Selection
2-3 Connects MCU’s Vpp pin to Vdd (non-programming mode)
1 2 3 1-2 Connects MCU'’s Vpp pin to Vpp input header (programming mode)
J13 Vpp Input Header
EI 1 Vpp input
2 Ground
Ji4 BDM OUT
1 2 1 BKGD output from MCU PT7
e © 2 Ground
3 NC
e o 4 Reset output from MCU PT6
¢ o 5 NC
5 6 6 Vcc
J15 BDM IN
1 2 1 Input to MCU BKGD
s © 2 Ground
3 NC
¢ e 4 | RESET* input to MCU
* o 5 NC
5 6 6 Vcc
NOTE: At reset, the BKGD input serves with MODA and MODB to determine
the CPU mode. Refer to Table 4-6. CPU Mode Selection.
4-4 68EVB912BC32UM/D

@ MOTOROLA HARDWARE REFERENCE

Table4-1. Jumper and Header Functions (continued)

Diagram Pins Description

J16, J17 MCU Mode Selection: MODB (J16), MODA (J17)

J16in | MODB MODA
J17 in
oo
0 0 Single Chip mode
NOTE: If cut, these headers must be wired to external circuitry that provides

the desired levels for MODA and MODB. Refer to Table 4-6. CPU Mode

Selection.

J18 Vdd Connection to BDM OUT

1-2 | Connects Vdd to BDM OUT pin 6

cut BDM OUT pin 6 open

J19 Reset Connection to BDM OUT

in Connects MCU-generated reset (PT6) to BDM OUT pin 4
cut BDM OUT pin 4 open

4.3 POWER INPUT CIRCUITRY

The input power connector on the EVB is a 2-pin, lever-actuated connector (PS). Decoupling
capecitorsfilter ripple and noise from the supply voltage.

4.4 TERMINAL INTERFACE
An RS-232C transceiver (U1) links the MCU’s Serid Communications Interface to the RS-232C DB-

9 receptacle, PL. The communications parameters for this port are described in 2.5 Terminal
Communications Setup.

4.5 MICROCONTROLLER

The MC68HC912BC32 is one of a family of next generation M68HC11 microcontrollers with both
on-chip memory and periphera functions. The CPU12 is a high-speed, 16-bit processing unit. The

68EVB912BC32UM/D 4-5

HARDWARE REFERENCE @ MOTOROLA

programming mode and stack frame are identical to those of the standard M68HC11 CPU. The
CPU12 ingruction set is a proper superset of the M68HC11 ingtruction set. All M68HC11 instruction
mnemonics are accepted by CPU12 assemblers with no changes.

The EVB-resdent MC68HC912BC32 (U3) has seven modes of operation. These modes are
determined at reset by the state of three mode pins — BKGD, MODB, and MODA — as shown in
Table 4-6.

The EVB is factory-configured for MCU operation in the Norma Single Chip mode. In this mode of
operation, dl port pins are avalable to the user. On-chip FHash EEPROM is used for program
execution, with byte-erasable EEPROM and some RAM available for user code/data. Although other
MCU modes are available, the EVB was designed for the Single Chip mode of operaion. Thereis no
provison for externd memory.

For more information on the CPU, refer to the CPU12 Reference Manual.

Table4-6. CPU M ode Selection

BKGD MODB MODA Mode Description
Through BDM IN Header J16 Header 17
0 0 0 Special Single Chip
0 0 1 Special Expanded Narrow
0 1 0 Special Peripheral
0 1 1 Special Expanded Wide
1 0 0 Normal Single Chip
1 0 1 Normal Expanded Narrow
1 1 0 Reserved (currently defaults to
peripheral mode)
1 1 1 Normal Expanded Wide

4-6 68EVB912BC32UM/D

@ MOTOROLA HARDWARE REFERENCE

4.6 CLOCK CIRCUITRY
The EVB comes with a16-MHz oscillator module, Y 2.

Header J10 may be used to disconnect Y 1 from the MCU'’s on-chip oscillator. An externa clock may
then be supplied to EXTAL through J10.

4.7 RESET

The reset circuit includes a pull-up resistor, reset switch (S1), and a low-voltage inhibit device with a
toggle voltage of 4.6 Vdc. Thisreset circuit drivesthe MCU's RESET* pin directly.

4.8 LOW-VOLTAGE INHIBIT

Low voltage inhibition (LVI) uses a Motorola undervoltage sensing device (U2) to automaticaly drive
the MCU’'s RESET* pin low when Vdd fdls bedow U2s threshold. This prevents the accidentd
corruption of EEPROM data if the power-supply voltage should drop below the dlowable level.

If operation below U2's threshold (but no lessthan 2.7 Vdc) is required, one then U2 must be replaced

with a device that has the required threshold voltage.
4.9 BACKGROUND DEBUG MODE (BDM) INTERFACE

The MCU’s serid BDM interface can be accessed through two 2x3 headers, BDM IN (J15) and
BDM OUT (J14). The pin assgnments are shown in Table 4-7.
The BDM interface may serve in two ways.

as the "probe" interface through which a host EVB in POD mode controls a target system
(seesection 3.1.3)

as the user interface with the EVB. This requires a development tool such as Motorola's
Serid Debug Interface. For more information, refer to the Motorola Serial Debug
Interface User’s Manual.

68EVB912BC32UM/D 4-7

HARDWARE REFERENCE @ MOTOROLA

Table4-7. BDM Connector Pin Assgnments

Pin Number Description
J15 (in) J14 (out)
1 BKGD input to MCU BKGD output from MCU PT7
2 Vss Vss
3 no connection no connection
4 RESET* input to MCU Reset output from MCU PT6 @
5 no connection no connection
6 Vdd vdd @
W Refer to Table 4-1.

4.10 PROTOTYPE AREA

The EVB's prototype area dlows congtruction of custom 1/O circuitry that can be connected to the
MCU'’s I/O lines through connectors P2, P3, P4, and P6. This areais a grid of holes (approximately
11 by 28) on 1/10-inch (2.54 mm) centers. This spacing accommodates most sockets, headers, and
device packages.

Figure 1-1 shows the component-side view of the prototype area. Adjacent Vss (ground) and Vdd
footprints are provided for wire-wrap pins.
4.11 MCU CONNECTORS

Four 2x20 header footprints, P2, P3, P4, and P6, surround the MCU and provide access to its1/0 and
bus lines. They may be populated with wire-wrap pins or strip headers for use as 1/O connectors,
connection points for instrumentation probes and target hardware, and connections to the prototype
areadescribed in section 4.10. Figure 4-3 and Figure 4-4 depict the pin assgnments for these headers.

4-8 68EVB912BC32UM/D

HARDWARE REFERENCE

68EVB912BC32UM/D

PA2
PA4
PAG
VDD47
VRH
PADO
PAD2
PAD4
PADG6
VDDAD

2 PA3

4 PAS5

6 PAY

8 VS48
VRL

12 PAD1
14 PAD3
16 PADS5S
18 PAD7
20 VSSAD

000000O0OCGO0GO
=
o

U
N

PS1
PS3
PS5
PS7
10 PCANG
PCAN4
14 PCAN2
16 CANRX
18 VDDX78
20 PP6

oo~ N

0000000000
N

U
w

Figure4-3. MCU I/O Headers P2, P3

4-9

HARDWARE REFERENCE

@mu

PB3

PB5

PB7
PE6/MODB
PE4
VDDX31
EXTAL
PE3

PE1

PAO

PTO
PT2
VS
PT4
PT6
BKGD
PB1

Figure4-4.

l1|® e|2 PB4
3|]® ®]4 PB6
51 e|6 PE7
71® ®|8 PE5MODA
9|® ®]10 VSSX30
111 ®]| 12 RESET*
131 o]14 XTAL
15| ®]16 PE2
17|1® ®]18 PEO
191 ©]|20 PAl
P4
1| |2 PP4
3|® ®|4 PR2
51 ®|6 PPO
71 e|8 PT1
9l e]10 VDD10
111 e] 12 PT3
13|® @] 14 PT5
15| @] 16 PT7
17|e e| 18 PBO
19| e|20 PB2
P6

MCU I/0O Headers P4, P6

4.12 CAN PHYSICAL INTERFACE

A CAN Physcd Interface is included on the EVB. This comprises a Philips PCA82C20 CAN
Interface Controller. The TXD and RXD pins on the PCA82C250 are connected to the CANTX and
CANRX pins respectively on the MC68HC912BC32. The CAN bus signals, CANH and CANL are
available on jumper J9. Table 8-4 shows the pinout for JO.

4-10

68EVB912BC32UM/D

@mmmm

HARDWARE REFERENCE

68EVB912BC32UM/D

Table 8-4 - J9 - CAN Physical Interface Header Pinout

v
S

Sgnd

GND

GND

CANH

CANH

CANL

CANL

GND

O N[O O | W] DN| P

GND

4-11

HARDWARE REFERENCE @ MOTOROLA

4-12 68EVB912BC32UM/D

@ MOTOROLA S-RECORD FORMAT

APPENDIX A
S-RECORD FORMAT

DESCRIPTION

The S-Record format for output modules was devised for the purpose of encoding programs or data
filesin a printable format for trangportation between computer systems. The trangportation process can
thus be visudly monitored and the S-Records can be more easily edited.

S-RECORD CONTENT

When viewed by the user, S-Records are essentially character strings made of severd fields that identify
the record type, record length, memory address, code/data, and checksum. Each byte of binary dataiis
encoded as a 2-character hexadecima number: the first character represents the high-order 4 bits, and
the second represents the low-order 4 bits of the byte.

The 5 fidlds that comprise an S-Record are shown below:

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

The S-Record fields are composed as follows:

Field Printable Contents
Characters
Type 2 S-Record type - SO, S1, etc.
Record length 2 The count of the character pairs in the record, excluding the type and

record length.

Address 4,6,0r8 The 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.
Code/data 0-2n From 0 to n bytes of executable code, memory-loadable data, or

descriptive information. For compatibility with teletypewriters, some
programs may limit the number of bytes to as few as 28 (56 printable
characters in the S-Record).

Checksum 2 The least significant byte of the one's complement of the sum of the
values represented by the pairs of characters making up the record length,
address, and the code/data fields.

68EVB912BC32UM/D A-1

S-RECORD FORMAT @ MOTOROLA

Each record may be terminated with a CR/LF/NULL. Additiondly, an S-Record may have an initid
fidd to accommodate other data such as line numbers generated by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

S-RECORD TYPES

Eight types of S-Records have been defined to accommodate the severd needs of the encoding,
trangportation, and decoding functions. The various Motorola upload, download, and other record
trangportation control programs, as well as cross assemblers, linkers, and other file-creating or
debugging programs, utilize only those S-Records that serve the purpose of the program. For specific
information on which S-Records are supported by a particular program, the user manud for that
program must be consulted.

NOTE

D-Bug12 supports only the S1 and 9 records. All data before the first
Sl record isignored. Theresfter, al code/data records must be of type
S1 until the SO record terminates data transfer.

An S-Record format module may contain S-Records of the following types:

SO The header record for each block of S-Records. The code/data field may contain any descriptive
information identifying the following block of S-Records. The address field is normally zeroes. SO
records are ignored by the EVB.

S1 A record containing code/data and the 2-byte address at which the code/data is to reside

S2-S8 | Ignored by the EVB

S9 The termination record for a block of S1 records. Address field may optionally contain the 2-byte
address of the instruction to which control is to be passed. If not specified, the first entry point
specification encountered in the object module input is used. There is no code/data field.

Only one termination record is used for each block of S-Records. Normaly, only one heeder record is
used, athough it is possble for multiple header records to occur.

A-2 68EVB912BC32UM/D

@ MOTOROLA S-RECORD FORMAT

S-RECORD EXAMPLE

Shown below isatypicd S-Record format module, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
S11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492

S9030000FC

The above module consigts of an SO header record, four S1 code/data records, and an SO termination
record.

The SO header record is comprised of the following character pairs:

SO S-Record type SO0, indicating a header record.

06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII bytes) follow.
00 Four-character 2-byte address field, zeroes.

00

48

44 ASCII H, D, and R - "HDR".

52

1B Checksum of SO record.

Thefirst S1 code/datarecord is explained as follows:

S1 S-Record type S1, indicating a code/data record to be loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating 19 character pairs, representing 19 bytes of binary data,
follow.

00 Four-character 2-byte address field; hexadecimal address 0000, indicates location where the

00 following data is to be loaded.

68EVB912BC32UM/D A-3

S-RECORD FORMAT

@mu

The next 16 character pairs are the ASCII bytes of the actua program code/data. In this assembly
language example, the hexadecima opcodes of the program are written in sequence in the code/data

(Bal ance of this code is continued in the
code/data fields of the remaining Sl
and stored in nmenory |ocation

fidlds of the S1 records:

Opcode Instruction

28 5F BHCC $0161

24 5F BCC $0163

22 12 BHI $0118

22 6A BHI $0172

00 04 24 BRSET 0, $04, $012F

29 00 BHCS $010D

08 23 7C BRSET 4, $23, $018C
records,
0010, etc.)

2A

Checksum of the first S1 record.

The second and third S1 code/data records each also contain $13 (19) character pairs and are ended
with checksums 13 and 52, respectively. The fourth S1 code/data record contains 07 character pairs
and has a checksum of 92.

The SO termination record is explained as follows:

S9 S-Record type S9, indicating a termination record.

03 Hexadecimal 03, indicating three character pairs (3 bytes) follow.
00 Four-character 2-byte address field, zeroes.

00

FC Checksum of S9 record.

Each printable character in an S-Record is encoded in hexadecima (ASCIl in this example)
representation of the binary bits which are actudly transmitted. For example, the first S1 record above
IS sent as shown below.

TYPE

LENGTH

ADDRESS

CODE/DATA

CHECKSUM

1

0

0

5

2

A

5

3 3 1

3 1

3 3

3 0

3 0

3 0

3 0

3 2

3 8

3 5

4 6

3 2

4 1

0101|0011 0011|0001

0011|0001

0011|0011

0011|0000

0011|0000

0011|0000

0011|0000

0011|0010

0011|1000

0011|0101

0100|0110 soe

0011|0010

0100| 0001

A-4

68EVB912BC32UM/D

@ MOTOROLA COMMUNICATIONS PROGRAM EXAMPLES

APPENDIX B
COMMUNICATIONS PROGRAM EXAMPLES

INTRODUCTION

In dl of these examples, firg follow the EVB dartup procedure in section 3.2. When the dtartup
procedure cals for setting up the host computer’s communications program for termina emulation,
follow the stepsin the examples.

Keyboard entries are illustrated in this gppendix using the following conventions.

<ENTER> Press the keyboard' s Enter, Carriage Return, or Return key.
<ALT-P> While holding down the ALTERNATE key, pressthe P key.
<CTL-\> While holding down the CONTROL key, press the backd ash key.
<filename> Supply the appropriate file name when required.

The stepwise procedures in this gppendix are as accurate as possible. However, it is not feasble to
document al of the communications programs thet are available or to guarantee that a newer revision of
a program behaves in exactly the same way as the verson used to develop the procedure. For this
reason, the steps are as generic as possible in their descriptions. They can thus serve as guiddines for
programs not exemplified in this manud. Always consult the documentation for the program being
used.

PROCOMM FOR DOS— IBM PC

Setup

To st up Procomm using DOS on an IBM-compatible PC for use as the EVB termind, first refer to
section 3.2 for the EVB dartup procedure, which is inter-rdated with this example. Then follow these
steps:

1. Atthe DOS prompt, Invoke the Procomm program by typing:
PROCOMVKRET URN>

2. Enter the Setup menu by pressing <ALT-S>.

3. Fromthe TERMINAL SETUP submenu, sdect the fallowing:
Termind emulaion WY SE 100

68EVB912BC32UM/D B-1

COMMUNICATIONS PROGRAM EXAMPLES

@ MOTOROLA

Duplex

Flow control

CR trandation (in)
CR trandation (out)
BStrandation

BS key definition
Linewrap

Scroll

Bresk Length (ms)
Enquiry (CTRL-E)

FULL
NONE
CR
CR
DEST
BS
OFF
ON
350
OFF

4. Fromthe ASCII TRANSFER SETUP submenu, select the following:

Echo localy
Expand blank lines
Pace character
Character pacing
Line pacing

CR trandation

LF trandation

YES
YES

0 (ASCII)

25 (1/1000th sec)
10 (/10th sec)
NONE

NONE

5. Enter the Line Settings menu by pressng <ALT-P>. Sdect the following:

baud rate
data bits
stop hits
parity
COM port

9600 (or the customized EVB setting)

8

1

none

the host port used as the EVB termind interface

6. Resat the EVB by pressing Sl or by activating the gppropriate custom reset circuitry.
7. Press<ENTER>. The D-Bugl2 prompt should gppear on the display. Continue with the

Sartup procedure in section 3.2.

S-Record Transfersto EVB Memory

To load an SRecord file from the host computer into EVB memory usng Procomm on an IBM-
compatible host computer, firgt verify that the host is correctly configured and operating as the EVB

termind. Then follow these seps:

B-2

68EVB912BC32UM/D

@ MOTOROLA COMMUNICATIONS PROGRAM EXAMPLES

1. Atthe D-Bugl2 prompt, enter the LOAD or VERF command with any parameters.
2. Instruct Procomm to send the SRecord file by pressing the <Page Up> key. Follow the
onscreen ingtructions to select the S-Record file for transfer, usng ASCII transfer protocol.

Upon completion of the S-Record file tranfer, the D-Bugl12prompt is displayed.

KERMIT FOR DOS— IBM PC

Setup

To sat up Kermit using DOS on an IBM-compatible PC for use as the EVB termind, first refer to
section 3.2 for the EVB dartup procedure, which is inter-related with this example. Then follow these
steps:

1. At the DOS prompt, invoke Kermit by typing:
ker m t <ENTER>

2. Set the baud rate to 9600 (or the customized EVB setting) by typing:
set baud 9600<ENTER>

3. Connect to the EVB by typing:
connect <ENTER>

4. Reset the EVB by pressng Sl or by activating the gppropriate custom reset circuitry. The
D-Bugl2 prompt should appear on the display. Continue with the startup procedure in
Section 3.2.

S-Record Transfersto EVB Memory

To load an SRecord file from the host computer into EVB memory usng Kermit on an IBM-
compatible host computer, first verify that the host is correctly configured and operating as the EVB
termind. Then follow these seps.

1. Atthe D-Bugl2 prompt, enter the LOAD or VERF command with any parameters.
2. "Escape’ from the D-Bugl2 prompt and Sart the Kermit file transfer by typing:
<CTL-]>c
push<ENTER>
type <fil enanme> > coml<ENTER>

Upon completion of the S-Record file transfer, the D-Bug12 prompt is displayed.

68EVB912BC32UM/D B-3

COMMUNICATIONS PROGRAM EXAMPLES @ MOTOROLA

KERMIT — SUN WORKSTATION

Setup
To set up Kermit on the Sun Workstation for use as the EVB termind, firgt refer to section 3.2 for the
EVB gartup procedure, which isinter-related with this example. Then follow these steps:
1. Inashdl window, invoke Kermit by typing:
ker m t <ENTER>
2. Setthe serid port to the onein use for the EVB (ttya, ttyb, etc.) by typing:
set line /dev/ttya<ENTER>
3. Set the baud rate to 9600 (or the customized EVB setting) by typing:
set speed 9600<ENTER>
4. Connect to the EVB by typing:
connect <ENTER>

5. Reset the EVB by pressing Sl or by activating the gppropriate custom reset circuitry. The
D-Bugl2 prompt should appear on the display. Continue with the startup procedure in
section 3.2.

S-Record Transfersto EVB Memory

To load an S-Record file from the host computer into EVB memory usng Kermit on a Sun
Workdation, first verify that the host is correctly configured and operating as the EVB termind. Then
follow these steps:

1. In the shdl window being used for the EVB termind interface, a the D-Bugl2 prompt,
enter the LOAD or VERF command with any parameters.

2. Open ashdl window separate from the one being used for the EVB termind interface. In
this window, type:

cat <filenane> > /dev/ttya<ENTER>

Upon completion of the SRecord file transfer, the D-Bug12 prompt is displayed in the shell window
being used for the EVB termind interface.

B-4 68EVB912BC32UM/D

@ MOTOROLA COMMUNICATIONS PROGRAM EXAMPLES

MACTERMINAL — APPLE MACINTOSH

Setup

To st up MacTermina on an Apple Maclintosh computer for use as the EVB termind, firgt refer to
section 3.2 for the EVB dartup procedure, which is inter-rdated with this example. Then follow these
steps:

1. Sdect thefollowing from the Termind Settings menu:

Termind: TTY
Cursor Shape: Underline
Line Width: 80 Columns
Select: OnLine
Auto Repesat
Click on: OK
2. Sdect the following from the Compatibility Settings menu:
Baud Rate: 9600 (or the customized EVB setting)
Bits per Character: 8 Bits
Pexity: None
Handshake: None
Connection: Modem or Another Computer
Connection Port: Modem or Printer
Click on: OK

3. Resetthe EVB by pressng Sl or by activating the appropriate custom reset circuitry.

4. Press<ENTER>. The D-Bugl2 prompt should appear on the display. Continue with the
startup procedure in section 3.2.

S-Record Transfersto EVB Memory
To load an S-Record file from the host computer into EVB memory usng MacTermind, first verify that
the hogt is correctly configured and operating as the EVB termind. Then follow these steps:

1. At the D-Bugl2 prompt, enter the LOAD or VERF command with any parameters.

2. From the Maclntosh File menu, select Send File - ASCII.

3. From the diaog box, select the S-Record file to be transferred.

68EVB912BC32UM/D B-5

COMMUNICATIONS PROGRAM EXAMPLES @ MOTOROLA

4. Click on Send.

NOTES
1. S-Recordsare not displayed during the file transfer.

2. Following the file trandfer, MacTermind sends a cariage return-line feed pair,
which D-Bugl2 interprets as an erroneous command. To return to the D-Bugl2
prompt, reset the EVB.

RED RYDER — APPLE MACINTOSH

Setup

To set up Red Ryder on an Apple Maclintosh computer for use as the EVB termind, first refer to
section 3.2 for the EVB dartup procedure, which is inter-related with this example. Then follow these

steps:

1. Launchthe Red Ryder program.

Set up the Red Ryder parameters asfollows:
9600 baud (or the customized EVB setting)
8 data bits
1 stop hit
no parity
full duplex

3. Resatthe EVB by pressing Sl or by activating the gppropriate custom reset circuitry.

Press <ENTER>. The D-Bug12 prompt should appear on the display. Continue with the
Sartup procedure in section 3.2.

S-Record Transfersto EVB Memory

To load an SRecord file from the host computer into EVB memory using Red Ryder, first verify that
the hogt is correctly configured and operating asthe EVB termind. Then follow these steps:

1

B-6

At the D-Bug12 prompt, enter the LOAD or VERF command with any parameters.

2. From the Maclntosh File menu, sdect Send File - ASCII.
3.
4. Click on Send.

From the didog box, sdect the S-Record file to be transferred.

68EVB912BC32UM/D

@ MOTOROLA COMMUNICATIONS PROGRAM EXAMPLES

NOTE
S-Records are not displayed during the file transfer.

Upon completion of the S-Record file transfer, the D-Bug12 prompt is displayed.

68EVB912BC32UM/D B-7

COMMUNICATIONS PROGRAM EXAMPLES @ MOTOROLA

B-8 68EVB912BC32UM/D

@ MOTOROLA D-BUG12 STARTUP CODE

APPENDIX C
D-BUG12 STARTUP CODE

The D-Bugl2 startup code is located in Flash EEPROM starting at address range $F700, as shown in
Table 3-5.

To customize this startup code, it is necessary to dter the startup code in Flash EEPROM. For more
information, refer to Appendix E %2 EEPROM Bootloader.

MAP_PAGE: equ $0000

PORTE: equ $0008+MAP_PAGE
DDRE: equ $0009+MAP_PAGE
PEAR: equ $000a+MAP_PAGE
MODE: equ $000b+MAP_PAGE
I NI TRG equ $0011+MAP_PAGE
I NI TEE: equ $0012+MAP_PAGE
COPCTL: equ $0016+MAP_PAGE
CSCTLO: equ $003c+MAP_PAGE
CSCTL1: equ $003d+MAP_PAGE
CSSTRO: equ $003e+MAP_PAGE
PORTAD: equ $006f +MAP_PAGE
EEMCR: equ $00f O+MAP_PAGE
BPROT: equ $00f 1+MAP_PAGE
FEELCK: equ $00f 4+MAP_PAGE

MonRAMSt art: equ $0A00
MonRAMSI ze: equ $0200

RAM START: equ $0800

RAMSI ze: equ $0400

STACKTOP: equ RAM START+RAMSi ze ; stack at top of internal RAM

EE_START: equ $0d00 ; EEPROM | ocat ed here out of reset

Cust Dat a: equ $f6¢c0

| OBase: equ Cust Dat a+15 ; location of user supplied base address
; of I/Oregisters

EEBase: equ Cust Data+19 ; location of user supplied base

; address of EEPROM

68EVB912BC32UM/D C-1

D-BUG12 STARTUP CODE @ MOTOROLA

xr ef _Boot Load, _UserFnTabl e
xdef __MonStartup, _EEDel ay

switch .text
1
BRI S b S S S S S SR IR I I I S I R I I Sk I I IR I S I I A I I I I I I I I I I I I IR I I I I I I Ik I I I IR I I I I IR I Ik S I I I I I I I I I I I I I I I
1
* %

;| NI TI ALl ZATI ON
: The code in this section is initialization for the nmonitor on the EVB12B32

BE R R R R RS R R R SRR R R R R R R R R R R R R R R R R EREE R EREREEEREEEREEEEEEEEEEREEEEREEEREEERE]
1

* %

__MonStartup:
| ds #STACKTOP ; initialize nonitor stack pointer

; Di sabl e the COP watchdog by CR2: CR1:CRO = 0:0:0

; COPCTL = $07 when reset in nornmal npdes

; FCME and CRx bits are wite once in nornal nopdes

; COPCTL [CME :FCME : FCM : FCOP! DISR: CR2 : CRL : CRO] %$--16
clr COPCTL ; di sabl e wat chdog

; Clear all nmonitor RAMto start froma known state

| dx #MonRAMSt ar t

Cl r RAM clr 1, x+ ; clear one and inc pointer
cpx #MonRAMSt ar t +MonRAMSI ze
bne Cl r RAM ; loop till RAM cl ear

; Enabl e pipe signals, E, |Iow strobe and read/wite in port E
; PI POE, NECLK, LSTRE and RDWE are wite once in nornal nopdes

; PEAR [ARSIE : CDLTE : PIPCE : NECLK ! LSTRE : RDWE : O 0] $--0A
| daa #$2c ; prevent |ater protection |ock
staa PEAR ; PROTLK is wite-once

; W t hout changi ng nodes, enable internal visibility
; MODE [SMODN : MODB : MODA : ESTR! IVIS: O : EMD : EME] $--0B

bset MODE, $08 ; set IVIS
; Enabl e EEPROM so nonitor can program erase bytes

; EEMCR [1 1 1 1 1 o1 : PROTLK: EERC] $--FO
; BPROT [1 : BPROT6: BPROT5: BPROT4! BPROT3: BPROT2: BPROT1: BPROTO] $--F1

| daa #$fc ; prevent |ater protection |ock
staa EEMCR ; PROTLK is write-once
clr BPROT ; allow EE program and erase

; Di sable witing to the on-chip Fl ash EEPROM
; FEELCK [O 0 0 .0 .0 .0 0 : LOCK] $--F4

C-2 68EVB912BC32UM/D

@momnam

D-BUG12 STARTUP CODE

| daa #$01
staa FEELCK
, | dd EEBase
oraa #1
staa | N TEE
, | dd | OBase
staa | N TRG
| dx # User FnTabl e
jmp [0,x]
; This smal

wite a 1l to the Flash LOCK bit to
di sabl e acci dential reprogranm ng of
the flash nenory (where we're | ocated)

get the user supplied base address of the
on-chi p EEPROM

meke sure that the EEON bit remains set.
re-map the on-chi p EEPROM

get the user supplied base address of the
on-chip I/O registers
re-map the on-chip registers.

point to the table of user accessible

;routines.

the first entry is a pointer to main
GO

subroutine is used to produce a delay of approximately 10 nS.

; This delay is based on the follow ng conditions:

1.) An 8.00 MHz E-clock
2.) Subroutine located in internal menory

; This routine is called by D-Bugl2's WiteEEByte() function (through a
; poi nter stored in the Custom zation Data Tabl e).

_EEDel ay:

| dx #20000
Dl yLoop: dex

bne Dl yLoop

rts

end
68EVB912BC32UM/D

; load delay count into X
; decrenment count

; loop till done.

; return.

C-3

D-BUG12 STARTUP CODE @ MOTOROLA

C4 68EVB912BC32UM/D

@ MOTOROLA D-BUG12 CUSTOMIZATION DATA

APPENDIX D
D-BUG12 CUSTOMIZATION DATA

The customization data area, located in Flash EEPROM from $FC60 t o $F6FF, dlows usersto
change default data parameters used by D-Bugl2. The data contained in this area is described by C
data structure. The Cust onDat a typedef is shown below. For those unfamiliar with C, an assembly
language equivaent is dso shown. The purpose of each fidld is explained in the following paragraphs.

C Format

typedef struct {
Byt e User CCR; /* User CPU Condition Code Register */
Byte UserB; /* User CPU B-accumul ator */
Byte UserA; /* User CPU A-accunul ator */
Address UserX; /* User CPU X-index register */
Address User; /* User CPU Y-index register */
Address User PC, /* User CPU Program Counter */
Addr ess User SP; /* User CPU Stack Pointer */
unsi gned | ong Sysd k; /* System d ock frequency (in Hz) */
Addr ess | OBase; /* Base address of I/Oregisters */
unsi gned int SCl BaudRegVal; /* Initial SO BAUD reg. value */
Addr ess EEBase; /* Base address of on-chi p EEPROM */
unsi gned int EES ze; /* Size of the on-chip EEPROM */
void (*Del ay) (void); /* Pointer to EEPROM del ay routine */
i nt AuxCndCount ; /* No. of commands in aux cnd table */

OdTbl EntryP AuxCrdTabl eP; /* Pointer to auxiliary cnd table */
} Cust onDat a;

Assembly Format

org $F6Q0
Cust Dat a equ *
User CCR dc.b $90 ; User CPU Condition Code Register
User B dc.b $00 ; User CPU B-accunul at or
User A dc.b $00 ; User CPU A-accumul at or
User X dc.w $0000 ; User CPU X-index register
UserY dc.w $0000 ; User CPU Y-index register
User PC dc.w $0000 ; User CPU Program Counter
User SP dc.w $0A00 ; User CPU Stack Pointer
Sysd k dc.l 8000000 ; System d ock frequency (in Hz)
| OBase dc.w $0000 ; Base address of the I/Oregisters
SCl BaudRegVal dc.w 52 ; Initial SC BAUD register val ue
EEBase dc.w $0D0O0 ; Base address of the on-chip EEPROM
EESi ze dc.w 768 ; size of the on-chip EEPROM
EEDel ay dc.w _EEDel ay ; address of EEPROM program erase delay routine
AuxCndCount dc.w O ; nunber of commands in auxiliary comrand table
AuxCrdTabl eP dc.w $0000 ; pointer to the auxiliary command tabl e

68EVB912BC32UM/D D-1

D-BUG12 CUSTOMIZATION DATA @ MOTOROLA

INITIAL USER CPU REGISTER VALUES

Thefirg seven fiddsinthe Cust onDat a t ypedef struct ae used to provide default vaues
for the user CPU12 regigters. Inthisverson of D-Bugl2, the user CCR valueis set to 0x90. This sets
the S-hit, disabling the STOP ingtruction, and the I-bit, inhibiting IRQ interrupts. The X-bit is cleared to
dlow the use of the XIRQ interrupt as a user-supplied programmer’s switch when operating in EVB
mode. The user SP valueis set to 0x0a00 when operating in EVB mode, which is one byte beyond the
last on-chip RAM location available to the user. The CPU12 stack pointer points to the last byte
pushed onto the stack.

When operating the M68EVB912BC32 in POD mode, the values in the table for the CCR and the
Stack Pointer are not used. Instead, when the target processor is reset by using the RESET command,
the target’s CCR is set to Oxd0. The stack pointer is set to one byte beyond the end of the target
system’s RAM, as specified by the DEVICE command.

In both operating modes, dl of the other registers are initidized with the vaues contained in the
customization data table.

SysClk FIELD

The SysCl k fidd isused to inform D-Bugl2 of the system clock frequency, M. Itsvalue, in Hz, is st
to 8,000,000. In thisimplementation, the E-clock frequency is the same as the system clock frequency,
M. SysCl k isused by the D-Bugl2 BAUD command in caculaing the new vaue of the SCI Baud
register for the requested baud rate.

NOTE

It is the responghbility of the startup code to peform any actions
necessary to set the system clock frequency. D-Bugl2 does not set or
change the system clock frequency using the Sy s Cl k vaue.

|OBase FIELD

The | OBase fidd defines the base address of the 1/0 registers. This address is used by DBugl2
when ng the 1/O regigters associated with the SCI and when programming or erasing the on-chip
EEPROM. On the MC68HC912BC32, the I/O registers are mappable to any 2Kbyte memory
space. Therefore, thel OBase entry should only be amultiple of 2048. Thevdueof | OBase is st
to 0x0000, which isthe default address of the 1/0 registers for the MC68HC912BC32.

D-2 68EVB912BC32UM/D

@ MOTOROLA D-BUG12 CUSTOMIZATION DATA

NOTE

It is the responsibility of the startup code to set the base address of the
I/O registers. D-Bugl2 does not set or change the 1/O register base
address.

SCiBaudRegVal FIELD

The SCl BaudRegVal fiddisused to set the initia baud rate of the SCI used for console I/O by D-
Bugl2. Notethat thevauein SCI BaudRegVal iswritten directly to the Baud register of the EVB
being used for the SCI termind interface..

Note that the vduein SCI BaudRegVal isnot the desred baud rate. The caculation of the actua
baud rate is not made by D-Bug12 because of the possihility of an invdid Baud register vaue. Without
avaid Baud regigter vaue during SCI initidization, D-Bugl12 would have no way to inform the user that
a problem exigts. Not al combinations of baud rates and system clock frequencies produce a vdid
Baud register value. The formula used to cadculate the Baud register vaueis:

SCI BaudRegVal = MCLK + (16 * SCl BaudRat e)

Theinitid Baud register vdue for thisverson of D-Bugl12 is 52 (0x0034). At asystem clock frequency
of 8.0 MHz, this sets the EVB-to-termina baud rate at 9600 baud.

NOTE

D-Bugl2 takes care of initidlizing the SCI registers. The Startup code
should not initidize the SCI. The SCI data format is set to 8 data bits,
1-dart bit, 1-stop bit, and no parity.

EEBase AND EESize FIELDS

The EEBase and EESi ze fidds are used to describe the base address and range of the
M68HC12s on-chip byte-erassble EEPROM. This information is used by D-Bugl2's
WiteMem() function to determine when a byte is being written to the on-chip EEPROM.
D-Bug12 then callsits WriteEEByte() function to program the data into the on-chip EEPROM. On the
MC68HC912BC32, the EEPROM base address is mappable to any 4-Kbyte memory space and
resdesin the upper 768 bytes of the 4k block. Therefore, the EEBas e entry should only beamultiple
of 0x1000. The vaue of EEBase is sat to 0x0d0O, which is the default base address of the on-chip
EEPROM for the MC68HC912BC32. The value of EESi ze is dso set to 0x0300 (768), which is
the ze of the on-chip EEPROM. Setting the value of EESI ze to zero disablesthe Wi t eMen()

function’s ability to write to on chip EEPROM.

68EVB912BC32UM/D D-3

D-BUG12 CUSTOMIZATION DATA @ MOTOROLA

NOTE

It is the responsibility of the startup code to set the base address of the
EEPROM. DBugl2 does not set or change the EEPROM base
address.

EEPROM ERASE/PROGRAM DELAY FUNCTION POINTER FIELD

The (void)(* Dday)(void) field is a function pointer that points to an EEPROM program/erase delay
routine. For the MC68HC912BC32, the routine should produce a delay of 10 ms before it returns.
The current implementation of the delay routine is nothing more than a software delay loop. The
subroutine islocated in the startup code area of the D-Bug12 Flash EEPROM from $F700 to $F77F.

AUXILIARY COMMAND TABLE ENTRIES

The last two entries in this table provide a mechanism to extend D-Bugl2's command set. The
AuxCndTabl eP pointsto an auxiliay command table, and Aux CnmdCount contains the number
of entries in the auxiliary command table. The table is an array of entries of type CndThl Ent ry.
Each Cnd Tbl Ent r y inthe auxiliary command table has the following structure:

typedef struct {

/* pointer to the commnd string */
const char *ConmmandStr;

/* pointer to the function that inplenents the command */
int (*ExecuteCnd)(int argC, char *argV[]);

} CdTbl Entry, *CndTbl EntryP;

The fird fidld is a character pointer to a null-terminated character array containing the command name.
The command name dring must be in upper case. The second field, a function pointer, points to a
function that implements the new D-Bug12 command. The first parameter to this function is a count of
the number of arguments that the command-line interpreter found on the command line. This count
includes the command name itsdf The command line may contan no more than a totd of 10
arguments. The second function parameter is a pointer to an array of type char *. Each dement
points to one of the command-line parameters parsed by the command line interpreter.

D-4 68EVB912BC32UM/D

@ MOTOROLA D-BUG12 CUSTOMIZATION DATA

The function implementing the new command can report any error conditions to the user in one of two
ways.

If the error condition can be described by one of the error messages in the enumerated constant
list below, the user-defined command should return the gppropriate
congtant.

If some other message text needs to be conveyed to the user, the command should
communicate the error message directly to the user by usng the
printf () function, which is one of the available user-cdlable C
functions. In this case, the user-defined command should return an
error code of noEtrr.

enum Error {
noErr = 0, /* Define No Error */
W ongNumArgs = 6, /* Wong Nunmber of Argunents */
BadStart Address = 7, /* Invalid Starting Address */
BadEndAddr ess 8, /* Invalid Ending Address */
St art EndErr or 9, [* Start Address Greater Than End Address */
BadHexData = 10, /* Invalid Hex Data */
Dat aSi zeErr or 1, /* Data Qut OF Range */
NoTargetWite 2, [/* Can't Wite Target Menory */
b

=1
=1

68EVB912BC32UM/D D-5

D-BUG12 CUSTOMIZATION DATA @ MOTOROLA

D-6 68EVB912BC32UM/D

@ MOTOROLA EEPROM BOOTLOADER

APPENDIX E
EEPROM BOOTLOADER

The EEPROM bootloader occupies 1 Kbyte of erase-protected Flash EEPROM starting at address
$FCO0. Itisinvoked when the EVB is started in BOOTLOAD mode (J1: pos A and J2: pos. A).

The bootloader may be used to program user code into byte-erasable (byte-erasable) EEPROM
starting a address $0D00 and/or Flash EEPROM starting at address $8000. The user program in
Flash EEPROM may then serve as the "boot" (startup) code when the board is placed in EVB mode
(J1: pos B and J2: pos B) or POD mode (J1: pos A and J2: pos B) and reset.

D-Bugl2 is overwritten when usng Flash EEPROM for user code. But since the bootloader itsdlf
cannot be overwritten, it is always available for loading new user code or rdloading D-Bug12.

NOTES

An additiond 1 Kbyte of Flash EEPROM, starting at address $F800, is
reserved for future expansion of the bootloader. Thus, user code may
only occupy the 30 Kbytes from $8000 to $F7FF.

Programs loaded and used in this manner cannot be used for true
emulation of an application. Refer to the redtrictionsin section 3.9.

Use of the EEPROM bootloader is described in the following sections.

SERIAL SRECORD BOOTLOADER

The bootloader contains a serid S-Record loader that can load assembled code from the host computer
into either Flash EEPROM or byte-erasable EEPROM. It uses the SCI for communications with the
host computer viathe EVB's RS-232C interface. The only specid requirements for the host computer's
communications program are:

It must operate at 9600 baud.

It must wait for the prompt string ** (the ASCII asterisk character) before sending aline of
text to the EVB. This "handshaking" is necessary because of the variable amount of time
required to program each S-Record into byte-erasable or Flash EEPROM. Byte-erasable
EEPROM requires 10 ms per byte. Flash EEPROM typically requires less than 180 ns per
byte but can take aslong as 3.5 ms.

When the EVB is restarted with jumpers J1 and J2 set for BOOTLOAD mode, the EEPROM

68EVB912BC32UM/D E-1

EEPROM BOOTLOADER @ MOTOROLA

bootloader executesimmediately. The bootloader's prompt appears on the host terminal:
(E)yrase, (P)rogram or (L)oadEE:

Sdect the desired function by typing an upper- or lower-case "E", "P", or "L".

NOTES

Before sdecting the Er ase or Pr ogr amfunction, gpply Vpp to the
EVB viaheader J13. Then move the jumper on header J12 to position
1-2. After programming is completed, remove Vpp and return J12 to
position 2-3.

The gtarting address of the user code must be placed in the reset vector
position ($F7FE) of the dternate reset/interrupt vector jump table. For
more information, see Vector Jump Table Interrupt and Reset
Addresses on page E-3.

The bootloader cannot be used with S'Records containing a code/data
fied longer than 64 bytes (S-Record length field greater than 67 bytes).
Longer SRecords will cause the bootloader to crash and/or program
incorrect datainto EEPROM.

S-Records may contain ASCI "CR" and/or "LF' characters.

CAUTION

If an Er ase or Pr ogr amoperation is unsuccessful after one or two
attempts, check the Vpp connection on header J13 and measure the
vdue of Vpp to verify compliance with the MC68HC912BC32
Electrical Specifications Supplement. A Vpp voltage lower than that
Specified may cause the erase or program operation to fall. A Vpp
voltage higher than that specified may cause permanent damage to
the device.

(E)rase

This sdlection causes a bulk erase of Flash EEPROM except for the erase-protected area starting a
address $F800, which contains the bootloader program, the area reserved for bootloader expansion,
and the reset/interrupt vector table. After the erase operation, a verify operation checks for proper
erasure of dl locations.

If the erase operation was successful, the message Er ased” is displayed, and the bootloader's
prompt is redisplayed.

If any locations were found to contain a value other than $FF, the message Not Er ased” is
displayed, and the bootloader's prompt is redisplayed. If an error occurs, see the above CAUTION.

E-2 68EVB912BC32UM/D

@ MOTOROLA EEPROM BOOTLOADER

(P)rogram

In Flash programming mode, the bootloader sends an ASCII "*" (agterisk character) to the host
computer, indicating thet it is ready to receive an S-Record. The hogt then sends a single S-Record and
walitsfor the "*" prompt from the bootloader before sending the next S-Record.

This process is repeated until the bootloader receives an end-of-file (S9) record from the host
computer. If no S9 record is received, the bootloader continues to wait for another S-Record
indefinitely. In this dtuation, the EVB must be reset to return to the bootloader's prompt (S-Records
dready loaded into Flash EEPROM are unaffected by the missng SO record; reprogramming is not

necessary).

If a Flash EEPROM location fails to program properly, the message "Not Pr ogr anmed” is
displayed, and the bootloader's prompt is redisplayed.

If an error occurs during programming, seethe CAUTION on page E-2. If errors perss, the problem
may be caused by an S-Record containing data that is outsde the range of the available FHash
EEPROM. The S-Record data must be within the range $8000 - $F7FF.

(L) oadEE

This selection causes a bulk erase of byte-erasable EEPROM in the address range $0D00 - $OFFF.
After the erase operation, a verify operation checks for proper erasure of al locations. If any locations
were found to contain a value other than $FF, the message 'Not Er ased" is displayed, and the
bootloader's prompt is redisplayed.

If the erase operation was successful, the bootloader sends an ASCII "*" (agterisk character) to the
host computer, indicating thet it is ready to recelve an S-Record. The host then sends a single
S-Record and waits for the "*" prompt from the bootloader before sending the next S-Record.

This process is repeated until the bootloader receives an end-of-file (S9) record from the host
computer. If no S9 record is recelved, the bootloader continues to wait for another S-Record
indefinitely. In this Stuation, the EVB must be reset to return to the bootloader's prompt (S-Records
dready loaded into EEPROM ae unaffected by the missng 9 record; reprogramming is not

necessary).

In case of errors during the (L) oadEE procedure, repeat the process severa times. |If the errors
perss, it is possble that the MCU may be damaged.

VECTOR JUMP TABLE: INTERRUPT AND RESET ADDRESSES

The CPU's interrupt and reset vectors are located in the erase-protected area of Flash EEPROM and
thus cannot be reprogrammed with the S-Record bootloader.

68EVB912BC32UM/D E-3

EEPROM BOOTLOADER

@ MOTOROLA

To dlow the user code to specify interrupt and reset addresses, each member of the erase-protected
vector table starting at address $FFCO contains a pointer to a vector jump table, which is located in
user-programmable Flash EEPROM starting at address $F7CO0.

Each entry in the vector jump table occupies two bytes of memory, which is adequate for the addresses
of user reset and interrupt service routines. The interrupt vector mapping is shown in the table below.

Vector Address CPU Interrupt Jump Table Address
$FFCO - $FFCF reserved $F7CO - $F7CF
$FFDO BDLC (J1850) $F7D0
$FFD2 ATD $F7D2
$FFD4 reserved $F7D4
$FFD6 SCIO $F7D6
$FFD8 SPI $F7D8
$FFDA Pulse Acc. Input Edge $F7DA
$FFDC Pulse Acc. Overflow $F7DC
$FFDE Timer Overflow $F7DE
$FFEO Timer Channel 7 $F7EQ
$FFE2 Timer Channel 6 $F7E2
$FFE4 Timer Channel 5 $F7E4
$FFE6 Timer Channel 4 $F7E6
$FFES Timer Channel 3 $F7E8
$FFEA Timer Channel 2 $F7EA
$FFEC Timer Channel 1 $F7EC
$FFEE Timer Channel 0 $F7EE
$FFFO Real Time Interrupt $F7FO0
$FFF2 IRQ $F7F2
$FFF4 XIRQ $F7F4
$FFF6 SWI $F7F6
$FFF8 lllegal Opcode Trap $F7F8
$FFFA COP Failure Reset SF7FA
$FFFC Clock Mon. Fail Reset $F7FC
$FFFE Reset $F7FE

RELOADING AND CUSTOMIZING D-BUG12

D-Bug12 should be reloaded into Flash EEPROM when:
user code has been programmed into Flash EEPROM, and it is desired to restore D-Bug12

E-4

as the boot program

upgrading to a newer verson of D-Bug12
modifying the D-Bug12 startup code or customization data

68EVB912BC32UM/D

@ MOTOROLA EEPROM BOOTLOADER

Obtaining D-Bug12 Upgrades

Upgrades to D-Bugl2 are made available for dectronic downloading. SRecord files containing the
latest verson may be obtained from Motorola Advanced Microcontroller Divison a the following
locations:

BBS %, (512) 891-3733 (FREE)
Tenet/FTP % freeware.aus.sps.mot.com

World Wide Web % http://freeware.aus.gps.mot.com

Reloading D-Bugl2

Whether reloading D-Bug12 from an upgrade file or from the file shipped with the EVB package, the
S-Record file requires editing before programming it into Flash EEPROM. This is necessary to remove
the S-Records containing the bootloader and vectors, which reside in erase-protected areas of Flash
EEPROM. Failure to remove them will cause errors.
Using atext editor, prepare the D-Bug12 S-Record file as follows:

1. Search for the S-Record line that begins with "S123FCO00".

2. Ddeethislineand all remaining S Records except for the lag line in the file, which is the
9 end-of-file record.

This removes the bootloader program and vector table from the file.
3. Make sure that no blank lines remain in the file, as they may cause the loading process to
fal.

The SRecord file may now be programmed into Flash EEPROM, using the 'E" and 'P" bootloader
procedures described in Serial S-Record Bootloader on page E-1.

Customizing D-Bug12

Two areas within D-Bug12 may be customized by the user:

cugtomization data ¥ located from $F6CO - $F6FF. This area contains default data
parameters that D-Bugl2 uses for device initidization (eg.., baud rate
for the communications interface).

startup code ¥ from $F700 - $F77F. This area contains program code used by D-Bugl2 to
initidize the MC68HC912BC32's hardware.

Appendix C % D-Bugl2 Startup Code and Appendix D % D-Bugl2 Customization Data
contain detailed explanations and source listings for these two aress.

68EVB912BC32UM/D E-5

EEPROM BOOTLOADER @ MOTOROLA

First, generate SRecord files for the new data, usng an M68HC12-compatible assembler or C

compiler.

Next, prepare the D-Bugl2 S-Record file for loading and add the customized S-Records to it. Using a
text editor, perform the following steps.

1
2.

Search for the S-Record line that begins with "S123FCO00".

Deletethisline and all remaining S'Records except for the lagt line in the file, which is the
9 end-of-file record.

This removes the bootloader program and vector table from the file.

Search for the SRecord line that begins with "S120F6C0O". Replace this line with the
S-Record containing the new customization data.

Search for the SRecord line that begins with "S123F700". Replace thisline and the next
one, "S11FF720", with the S-Records containing the new startup code.

Make sure that no blank lines remain in the file, as they may cause the loading process to
fal.

The S-Record file may now be programmed into Flash EEPROM, using the 'E" and 'P" bootloader
procedures described in Serial S-Record Bootloader on page E-1.

E-6

68EVB912BC32UM/D

EEPROM BOOTLOADER

INDEX

ASM command, 3-11
assembler
program, 1-5, 2-4, 3-54
single-line (D-Bug12), 3-11

— B—

background debug mode (BDM)
as user interface, 1-5, 1-6, 2-3
interface connectors, 4-7
target-system interface, 3-2

BAUD command, 3-14

BF command, 3-15

BOOTLOAD mode, 3-3, 3-6, E-1

bootloader, EEPROM, E-1

BR command, 3-16

BULK command, 3-18

bulletin boards, 1-8, E-5

byte-erasable EEPROM. See EEPROM

—C—

CALL command, 3-19
code
generation, 1-5, 3-54
modifying D-Bug12, E-5
commands, D-Bugl2
ASM — Assembler/Disassembler, 3-11
BAUD — Set Baud Rate, 3-14
BF — Block Fill, 3-15
BR — Breakpoint Set, 3-16
BULK — Bulk Erase EEPROM, 3-18
CALL — Cadl Subroutine, 3-19
DEVICE — Specify Target MCU Device, 3-20
EEBASE — Specify Target EEPROM Base Address, 3-
23
FBULK — Erase Target Flash EEPROM, 3-25
FLOAD — Program Target Flash EEPROM, 3-27
G — Go Execute a User Program, 3-29
G % GoTill, 3-30
HELP — Onscreen Help Summary, 3-31
LOAD — Load S-Record File, 3-33

68EVB912BC32UM/D

MD — Memory Display, 3-34
MDW — Memory Display, Word, 3-35
MM — Memory Modify, 3-36
MMW — Memory Modify, Word, 3-38
MOVE — Move Memory Block, 3-40
NOBR — Remove Breakpoints, 3-41
RD — Register Display, 3-42
REGBASE — Specify Target EEPROM Register
Address, 3-43
REGISTER NAME — Modify Register Value, 3-52
RESET — Reset Target MCU, 3-45
RM — Register Modify, 3-46
STOP — Stop Execution on Target MCU, 3-47
T — Trace, 3-48
UPLOAD — Display Memory, S-Record Format, 3-50
VERF — Verify S-Record File against Memory, 3-51
communications, BDM, 1-5, 1-6, 2-3, 3-2, 4-7
communications, EV B-host
baud rate, 2-5, 3-14
limitations, 3-57
parameters, 2-4
SCI port, 2-2
software, 1-6, 2-4, B-1
configuration
D-Bugl2, D-1, E-5
EVB, 2-1
jumpers, 4-1
connectors
locations, 1-3, 1-4
P1 — SCI RS-232C port, 2-2, 2-3
P2, P3, P4, P6 — MCU access, 1-5, 4-8
P5 — power input, 2-2, 4-5
types, 4-1
W8 %, Vpp, E-2
W9, W12 — BDM interface, 4-7
CPU
instruction trandation, 3-11, 3-12
modes, 4-6
registers. Seeregisters
type. SeeMCU
customer support, 1-8

—D—
D-Bugl12

INDEX

@ MOTOROLA

aborting a user program, 3-6
command set, 3-8, 3-10
command-line format, 3-7
commands. See commands, D-Bug12
configuration requirements, 1-5, 2-1
customization data, D-1
customizing, E-5
description, 1-4, 1-6, 3-7
generating user code, 1-5, 3-11, 3-54
limitations imposed by, 3-55
memory usage, 3-54, 3-55
operating, 3-4
reloading, E-5
resetting, 3-6
stack pointer, 3-55
starting, 3-3
startup code, C-1
startup modes, 1-5, 2-1, 3-3
terminal interface, 1-5
upgrades, E-5

DEVICE command, 3-20

—E—

EEPROM. See also memory
bootloader, E-1
byte-erasable
defined, 1-5
map, 3-55
erasing, 3-18, 3-25, E-1
Flash
defined, 1-5
map, 3-55
low-voltage protection, 4-7
operating modes, 1-4, 1-5, 2-1
programming, 3-27, 3-33, 3-54, E-1
starting execution from, 3-1, 3-3, E-1
usage, 3-54, 4-6
evauation board. See EVB
EVB
component placement, 1-3
configuring, 2-1
description, general, 1-1
description, hardware, 4-1
features, 1-1
firmware. See D-Bug12
functional overview, 1-4
operating modes
BOOTLOAD, 3-3, 3-6
EVB, 3-1, 34
JUMP-EEPROM, 3-1, 3-4
POD, 3-2, 3-5

operating procedures, 3-4
packing list, 2-1
restrictions on use, 3-55
specifications, 1-7
startup procedure, 3-3
unpacking, 2-1

EVB mode, 3-1, 3-4

— F—

FBULK command, 3-25

file transfers, 3-33, 3-51, 3-54, B-1
firmware. See D-Bug12

Flash EEPROM. See EEPROM
FLOAD command, 3-27

—G—
G command, 3-29
GT command, 3-30
—H—
headers
connector, 4-1. See also connectors
cut-trace, 4-1
description, 4-1

jumper, 4-1. See also jumper settings
HELP command, 3-31

IASM 12 assembler, 1-5, 2-4, 3-54

—J—

JUMP-EEPROM mode, 3-1, 3-4
jumper settings, 1-2, 4-1

L —

LOAD command, 3-33
low voltage inhibit (LVI), 4-7

—M—

MG68EVB912B32 Evauation Board. See EVB
MC68HC912B32 Microcontroller Unit. Ssee MCU
MCU

access interface, 1-5, 4-8

description, 4-6

location, 1-3

modes, 4-6

restrictions on use, 1-6, 3-54, 3-55

68EVB912BC32UM/D

@ MOTOROLA INDEX
type, 1-7, 4-6 ROM. See EEPROM
MCUasm assembler, 1-5, 2-4 RS-232C interface, 2-2, 3-56
MD command, 3-34
MDW command, 3-35 —S—
memory. See also EEPROM, RAM
limitations, 3-54, 3-56 SL. See switches
map, 3-54, 3-55 SCI port
microcontroller unit. See MCU baud rate, 3-14
MM command, 3-36 configuration, 2-2
MMW command, 3-38 usage, 1-5, 1-6, 2-2, 2-3, 3-56
modes, CPU, 4-6 serial communications interface. See SCI port
modes, operating. See EVB modes Serial Debug Interface (SDI), 1-5, 1-6, 2-3, 4-8
monitor program. See D-Bug12 specifications, EVB, 1-7
MOVE command, 3-40 S—RGCOI’dS, 3-33, 3-51, A-1
STOP command, 3-47
— N— switches, 1-5
locations, 1-3
NOBR command, 3-41 S1 — reset, 3-6
—p— —T—
P1 — SCI RS-232C port, 2-2, 2-3 T command, 3-48
P2, P3, P4, P6 — MCU access, 1-5, 4-8 target
P5 — power input, 2-2, 4-5 BDM interface, 3-2
packing list, 2-1 execution control, 3-3
POD mode, 3-2, 3-5 MCU type, 3-2
power parameters, 3-2
distribution, 4-5, 4-8 programming, 3-3
input circuit and protection, 4-5 terminal
input connector, P5, 2-2 baud rate, 2-5, 3-14
low-voltage inhibit, 4-7 cabling, 2-3
supply, connecting to, 2-2 communications parameters, 2-4
supply, requirements, 1-6, 1-7 communications software, 1-6, 2-4, B-1
printed circuit board connectors, 2-2
description, 4-1 interface circuitry, 4-5
layout, 1-3, 1-4 limitations, 3-57
program abort, 3-6, D-2 requirements, 1-6
prototype area, 1-5, 4-8 SCI port, 1-5, 2-2, 4-5
setup, 2-2, 2-4, 4-5
—R—
—U—
RAM . See also memory
map, 3-55 UPLOAD command, 3-50
usage, 3-54, 4-6
RD command, 3-42 —\V—
REGBASE command, 3-43
REGISTER NAME command, 3-52 vectors
registers, 3-16, 3-19, 3-29, 3-30, 3-42, 3-46, 3-48, 3-52, 3- jump teble, E-3
55, D-1 memory area, 3-55
reset, 1-5, 2-1, 2-5, 3-6, 4-7 VERF command, 3-51
RESET command, 3-45
RM command, 3-46
68EVB912BC32UM/D 3

INDEX

68EVB912BC32UM/D

